Product Description
Product Details
Product Features
PM VSD screw air compressor, is a type of screw air compressor that employs permanent magnet synchronous motor (PMSM) and frequency conversion speed control technology.
The main advantages of this screw air compressors are:
Energy saving and high efficiency: Compared with traditional asynchronous motors, permanent magnet inverter motors have higher energy utilization efficiency, and can maintain high power utilization and output power stability under both full load and partial load conditions.
Stable operation: the frequency converter can control a smoother start of the compressor, reduce the impact on the supporting power grid and the mechanical wear and tear of the machine itself, to extend the service life of the equipment.
Low noise: inverter operation can effectively reduce the noise level of the compressor at low load.
Intelligent: Equipped with an intelligent control system, the permanent magnet inverter motor can accurately control the compressor’s working status, distribute the load and achieve more efficient energy use.
Lower maintenance costs: when start-up, frequency conversion air compressor reduces the impact on the power grid and mechanical parts of the equipment, the service life is greatly increased of the compressor’s parts (the motor contactor, motor bearings, host bearings). Energy efficient controller makes the air compressor be in the loading state when at most working time, the relevant solenoid valves and pneumatic components have greatly reduced the number of actions, the failure rate of electrical and mechanical parts is greatly reduced.
Model List
Technical Parameters Of PM VSD Screw Air Compressor -JXPMX Series
This series adopt direct drive mode and variable frequency startup, the standard power supply is 380V/50Hz, and 110V~480V voltage and 60Hz is Optional
| Model | Pressure (MPa) |
Pressure (psi) |
FAD (m3/min) |
FAD (CFM) |
Power (kW/hp) |
Dimension (mm) |
Noise (dB) |
Weight (Kg) |
Pipe Diameter |
| JX-6APMX | 0.8 | 116 | 0.68 | 24 | 4.5/ 6 | 800*500*750 | ≤58±2 | 103 | G3/4 |
| JX-10APMX | 0.8 | 116 | 1.1 | 38.8 | 7.5/ 10 | 800*600*860 | ≤60±2 | 120 | G1/2 |
| 1 | 145 | 0.9 | 31.8 | ||||||
| 1.3 | 188 | 0.7 | 24.7 | ||||||
| JX-15APMX | 0.8 | 116 | 1.7 | 60 | 11/ 15 | 1050*750*1040 | ≤62±2 | 180 | G3/4 |
| 1 | 145 | 1.6 | 56.5 | ||||||
| 1.3 | 188 | 1 | 35.3 | ||||||
| JX-20APMX | 0.8 | 116 | 2.4 | 84.7 | 15/ 20 | 1050*750*1040 | ≤65±2 | 207 | G3/4 |
| 1 | 145 | 2.2 | 77.7 | ||||||
| 1.3 | 188 | 1.8 | 63.6 | ||||||
| JX-30APMX | 0.8 | 116 | 3.5 | 123.6 | 22/ 30 | 1160*800*1180 | ≤65±2 | 280 | G1 |
| 1 | 145 | 3 | 105.9 | ||||||
| 1.3 | 188 | 2.5 | 88.3 | ||||||
| JX-40APMX | 0.8 | 116 | 5.2 | 183.6 | 30/ 40 | 1250*950*1270 | ≤65±2 | 360 | G1 |
| 1 | 145 | 4.3 | 151.8 | ||||||
| 1.3 | 188 | 3.2 | 113 | ||||||
| JX-50APMX | 0.8 | 116 | 6.1 | 215.4 | 37/ 50 | 1250*950*1270 | ≤66±2 | 438 | G1 1/2 |
| 1 | 145 | 5.3 | 187.1 | ||||||
| 1.3 | 188 | 4.6 | 162.4 | ||||||
| JX-60APMX | 0.8 | 116 | 7.4 | 261.3 | 45/ 60 | 1250*1000*1370 | ≤68±2 | 486 | G1 1/2 |
| 1 | 145 | 6.8 | 240.1 | ||||||
| 1.3 | 188 | 5.7 | 201.3 | ||||||
| JX-75APMX | 0.8 | 116 | 9.5 | 335.4 | 55/ 75 | 1600*1140*1530 | ≤70±2 | 998 | G2 |
| 1 | 145 | 8.2 | 289.5 | ||||||
| 1.3 | 188 | 6.8 | 240.1 | ||||||
| JX-100APMX | 0.8 | 116 | 12.2 | 430.8 | 75/ 100 | 1750*1240*1600 | ≤70±2 | 1096 | G2 |
| 1 | 145 | 10.9 | 384.9 | ||||||
| 1.3 | 188 | 9.1 | 321.3 | ||||||
| JX-125APMX | 0.8 | 116 | 15.3 | 540.2 | 90/ 125 | 2350*1450*1830 | ≤82±2 | 1320 | G2 |
| 1 | 145 | 13.4 | 473.2 | ||||||
| 1.3 | 188 | 11.6 | 409.6 | ||||||
| JX-150APMX | 0.8 | 116 | 19.8 | 699.1 | 110/ 150 | 2550*1680*1900 | ≤82±2 | 2680 | DN80 |
| 1 | 145 | 16.4 | 579.1 | ||||||
| 1.3 | 188 | 14.5 | 512.0 | ||||||
| JX-175APMX | 0.8 | 116 | 23 | 812.1 | 132/ 175 | 2550*1680*1900 | ≤82±2 | 2900 | DN80 |
| 1 | 145 | 19.5 | 688.5 | ||||||
| 1.3 | 188 | 16.2 | 572.0 | ||||||
| JX-200APMX | 0.8 | 116 | 27.2 | 960.4 | 160/ 200 | 3050*1900*2000 | ≤84±2 | 4150 | DN80 |
| 1 | 145 | 22.6 | 798.0 | ||||||
| 1.3 | 188 | 21.2 | 748.6 | ||||||
| JX-250APMX | 0.8 | 116 | 30 | 1059.3 | 185/ 250 | 3050*1900*2000 | ≤84±2 | 4320 | DN80 |
| 1 | 145 | 27.2 | 960.4 | ||||||
| 1.3 | 188 | 23.3 | 822.7 | ||||||
| JX-270APMX | 0.8 | 116 | 33 | 1165.2 | 200/ 270 | 3620*2200*2250 | ≤86±2 | 5350 | DN100 |
| 1 | 145 | 29 | 1571.0 | ||||||
| 1.3 | 188 | 25.4 | 896.9 | ||||||
| JX-300APMX | 0.8 | 116 | 38 | 1341.8 | 220/ 300 | 3620*2200*2250 | ≤86±2 | 5600 | DN100 |
| 1 | 145 | 32 | 1129.9 | ||||||
| 1.3 | 188 | 28.6 | 1009.9 | ||||||
| JX-340APMX | 0.8 | 116 | 43 | 1518.3 | 250/ 340 | 3620*2200*2250 | ≤86±2 | 5960 | DN100 |
| 1 | 145 | 37.5 | 1324.1 | ||||||
| 1.3 | 188 | 31.2 | 1101.7 |
Presentation of all aspects
In our product showcase, the air compressor stands as a testament to our commitment to precision work for better quality. Every component, from the robust motor to the intricate valves, is crafted with meticulous attention to detail in our specialized workshops.
Our air compressor production begins with precision cutting and shaping of sheet metal, ensuring a CHINAMFG foundation. Components are assembled with meticulous care, from welding to the installation of noise-reducing mufflers, and coated for protection. Rigorous testing and careful packaging guarantee quality and safe delivery, reflecting our commitment to CHINAMFG in every compressor we craft.
Our air compressor production begins with precision cutting and shaping of sheet metal, ensuring a CHINAMFG foundation. Components are assembled with meticulous care, from welding to the installation of noise-reducing mufflers, and coated for protection. Rigorous testing and careful packaging guarantee quality and safe delivery, reflecting our commitment to CHINAMFG in every compressor we craft.
Our factory integrates advanced machinery to craft top-quality air compressors. Laser cutting and bending machines create precise metal components, while welding builds a durable structure. Test equipment ensures performance and safety, spray booths protect and enhance aesthetics, and efficient forklift handling streamlines production, delivering reliable products to our customers.
Customer testimonials overwhelmingly reflect high satisfaction with our air compressor products and service. Clients are consistently impressed by the durability and performance of our air compressors, noting their superior quality and suitability for various industrial needs. Ease of installation, impressive power output, and the smooth operation of our machines are frequently highlighted as key attributes.
Air compressors play a key role in many scenarios. In laboratory gas supply, they ensure precise and stable air pressure; in automotive spraying and metal stamping, they provide efficient power to improve production efficiency. In wood processing and rock drilling, air compressors drive tools to realize precise operation; in plastic production lines, stable airflow helps molding to ensure product quality. These application scenarios fully demonstrate the indispensability of air compressors in modern industrial production.
At exhibitions and customer visits, we carefully demonstrate the outstanding performance and innovative technology of our air compressors, allowing visitors to experience the advantages of their use in a wide range of industrial applications. From laboratory gas supply to automotive spraying, from metal stamping to wood processing to plastics production, the power and flexibility of air compressors were demonstrated in all aspects. Through on-site demonstrations and interactive exchanges, we not only enhanced our customers’ understanding of the product performance, but also collected valuable feedback
/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by lmc 2025-02-25
China Standard Variable Frequency Starting Screw Air Compressor Air Frequency Magnetism Permanent Compressor air compressor for sale
Product Description
Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!
Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP
Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug
Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.
Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models
SPECIFICATION
| MODEL | LB-20-8 |
| Ambient Temperature | -5ºC to +45 ºC |
| Max Pressure (bar) | 8 |
| Air Delivery (m3/min) | 2.3 |
| Compression Stage | Single Stage Compression |
| Cooling Method | Air Cooled |
| Discharge Temperature (ºC) | ≤ 75ºC |
| Oil Cotent (ppm) | ≤3 |
| Transmission Method | Direct driven |
| Sound Level dB(A) | 66±3 |
| Lubricating Oil Amount | 15L |
| Motor Power | 15KW/20HP |
| Motor Level Of Protection | IP23 |
| Voltage | 380V/3ph/50Hz |
| Dimensions (mm) | 1000x730x1571(L*W*H) |
| Weight | 330KG |
| Discharge Outlet Thread | 3/4” |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Installation Type: | Stationary Type |
| Type: | Twin-Screw Compressor |
| Transmission: | Coupling |
| Samples: |
US$ 918/set
1 set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2024-02-12
China manufacturer China Factory Variable Energy Frequency Air Compressor 50HP VSD Two Stage Screw Air Compressor for Sewing Machine air compressor oil
Product Description
Product Parameters
| Model | Motor Power | Maximum Working Pressure | Free Air Delivery | Air Outlet Pipe Diameter | Weight | Dimensions(L*W*H) | |||
| kW | hp | bar(g) | psig | m³/min | cfm | kg | mm | ||
| BG30APMII | 22 | 30 | 7 | 102 | 4.3 | 152 | G1-1/2″ | 650 | 1500*1000*1350 |
| 8 | 116 | 4.1 | 145 | ||||||
| 10 | 145 | 3.5 | 124 | ||||||
| 13 | 189 | 2.7 | 95 | ||||||
| BG40APMII | 30 | 40 | 7 | 102 | 6.0 | 212 | G1-1/2″ | 700 | 1500*1000*1350 |
| 8 | 116 | 5.9 | 208 | ||||||
| 10 | 145 | 4.7 | 166 | ||||||
| 13 | 189 | 3.9 | 138 | ||||||
| BG50APMII | 37 | 50 | 7 | 102 | 7.1 | 251 | G1-1/2″ | 750 | 1500*1000*1350 |
| 8 | 116 | 6.9 | 244 | ||||||
| 10 | 145 | 5.8 | 205 | ||||||
| 13 | 189 | 5.4 | 191 | ||||||
| BG60APMII | 45 | 60 | 7 | 102 | 10.0 | 353 | G2″ | 1250 | 2100*1300*1650 |
| 8 | 116 | 9.5 | 335 | ||||||
| 10 | 145 | 7.8 | 275 | ||||||
| 13 | 189 | 6.8 | 240 | ||||||
| BG75APMII | 55 | 75 | 7 | 102 | 13.0 | 459 | G2″ | 1300 | 2100*1300*1650 |
| 8 | 116 | 12.5 | 441 | ||||||
| 10 | 145 | 9.2 | 325 | ||||||
| 13 | 189 | 7.5 | 265 | ||||||
| BG100APMII | 75 | 100 | 7 | 102 | 15.5 | 547 | G2″ | 1350 | 2100*1300*1650 |
| 8 | 116 | 15.2 | 537 | ||||||
| 10 | 145 | 12.0 | 424 | ||||||
| 13 | 189 | 10.2 | 360 | ||||||
| BG125APMII | 90 | 125 | 7 | 102 | 19.8 | 699 | DN80 | 2700 | 2500*1650*1900 |
| 8 | 116 | 19.5 | 689 | ||||||
| 10 | 145 | 15.0 | 530 | ||||||
| 13 | 189 | 14.0 | 494 | ||||||
| BG150APMII | 110 | 150 | 7 | 102 | 24.0 | 848 | DN80 | 2800 | 2500*1650*1900 |
| 8 | 116 | 23.0 | 812 | ||||||
| 10 | 145 | 19.2 | 678 | ||||||
| 13 | 189 | 16.0 | 565 | ||||||
| BG180APMII | 132 | 180 | 7 | 102 | 27.5 | 971 | DN80 | 3000 | 2500*1650*1900 |
| 8 | 116 | 27.0 | 954 | ||||||
| 10 | 145 | 23.7 | 837 | ||||||
| 13 | 189 | 19.0 | 671 | ||||||
| BG220APMII | 160 | 220 | 7 | 102 | 33.0 | 1165 | DN80 | 4300 | 3000*1900*1950 |
| 8 | 116 | 32.5 | 1148 | ||||||
| 10 | 145 | 27.5 | 971 | ||||||
| 13 | 189 | 22.5 | 795 | ||||||
| BG250APMII | 185 | 250 | 7 | 102 | 39.0 | 1377 | DN80 | 4400 | 3000*1900*1950 |
| 8 | 116 | 36.0 | 1271 | ||||||
| 10 | 145 | 32.0 | 1130 | ||||||
| 13 | 189 | 27.5 | 971 | ||||||
| BG270APMII | 200 | 270 | 7 | 102 | 43.5 | 1536 | DN80 | 5000 | 3600*2200*2200 |
| 8 | 116 | 41.0 | 1448 | ||||||
| 10 | 145 | 35.5 | 1254 | ||||||
| 13 | 189 | 31.5 | 1112 | ||||||
| BG300APMII | 220 | 300 | 7 | 102 | 51.5 | 1819 | DN100 | 5500 | 3600*2200*2200 |
| 8 | 116 | 46.0 | 1624 | ||||||
| 10 | 145 | 38.5 | 1360 | ||||||
| 13 | 189 | 35.5 | 1254 | ||||||
| BG340APMII | 250 | 340 | 7 | 102 | 54.0 | 1907 | DN100 | 6000 | 3600*2200*2200 |
| 8 | 116 | 51.0 | 1801 | ||||||
| 10 | 145 | 45.0 | 1589 | ||||||
| 13 | 189 | 38.0 | 1342 | ||||||
| BG380APMII | 280 | 380 | 7 | 102 | 60.0 | 2119 | DN125 | 6800 | 4000*2300*2300 |
| 8 | 116 | 57.0 | 2013 | ||||||
| 10 | 145 | 50.0 | 1766 | ||||||
| 13 | 189 | 43.0 | 1519 | ||||||
| BG420APMII | 315 | 420 | 7 | 102 | 65.0 | 2295 | DN125 | 7000 | 4000*2300*2300 |
| 8 | 116 | 62.0 | 2190 | ||||||
| 10 | 145 | 56.0 | 1978 | ||||||
| 13 | 189 | 50.5 | 1783 | ||||||
| BG480APMII | 355 | 480 | 7 | 102 | 75.0 | 2649 | DN150 | 8500 | 4200*2200*2350 |
| 8 | 116 | 73.0 | 2578 | ||||||
| 10 | 145 | 64.0 | 2260 | ||||||
| 13 | 189 | 55.0 | 1942 | ||||||
| BG540APMII | 400 | 540 | 7 | 102 | 84.0 | 2966 | DN150 | 9000 | 4200*2200*2350 |
| 8 | 116 | 82.0 | 2896 | ||||||
| 10 | 145 | 72.0 | 2543 | ||||||
| 13 | 189 | 61.0 | 2154 | ||||||
Company Profile
Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.
Wallboge’ s primary businesses focus in following key areas:
Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump
At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe.
Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.
Certifications
Exhibitions
After Sales Service
1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
Our Advantages
1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.
FAQ
Q1: Are you a factory or a trading company?
A1: We are a factory. Please check our Company Profile.
Q2: What is the exact address of your factory?
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China
Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.
Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.
Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.
Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.
Q7: What is your MOQ requirement?
A7: 1 unit.
Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Engineers Available to Overseas Service. |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-02-09
China Good quality 15kw 20HP Variable Frequency Oil Free Screw Air Compressor with Great quality
Product Description
15kw 20hp variable frequency oil free screw air compressor
Motor
The motor with protection class IP54is used, the insulation class is F grade,and the bearing is made of SwedishSKF heavy bearing.
Air end
Adopting twin-screw main engine, largerotor and low speed design, new 5:6asymmetric rotor tooth profile, brandbearing, determines the excellent performance of the whole machine.
Intake valve
The red star intake valve can automaticallyadjust the gas volume according to the requirements of the system gas consumption,reducing operating costs.
MPV
Made of aluminum, it has outstanding antirust performance. With check function.The stable setting of the opening pressureensures that sufficient circulation pressureis established in the system to ensure lubrication of the machine body.
Cooling system
Feature:Large cooler system
Advantage:Axial flow Fan used forgood cooling effect
Benefit:Allow ambient temperature at 52″C.
Smart display screen
Feature:Intelligent control systemAdvantage:10 inch monitor to showall the date
Benefit:Simple operation and trouble free
Oil and gas separator
With the Apuda oil and gas separator,the rigorous oil and gas separationfilter can reduce the oil content of theexhaust gas in the compressor andthe fuel consumption of the unit.
The durable pipe system
The galvanized pipe is more durable, sturdy, longer, longer, and durable.
| Specification | ||||||||||||
| Model | Working Pressure | Air Delivery | Motor Power | Type of Driving | Type of Cooling | Dimension(mm) | Weight | Output pipe | ||||
| psig | bar | cfm | m3/min | kw/hp | L | W | H | (kg) | Diameter | |||
| GLDS-10A | 100 | 7 | 38.8 | 1.1 | 7.5/10 | Driect driven | Air Cooling | 850 | 650 | 800 | 240 | 3/4″ |
| 116 | 8 | 35.3 | 1 | |||||||||
| 145 | 10 | 30 | 0.85 | |||||||||
| 181 | 12.5 | 24.7 | 0.7 | |||||||||
| GLDS-15A | 100 | 7 | 63.6 | 1.8 | 11/15 | 1050 | 700 | 1000 | 450 | 3/4″ | ||
| 116 | 8 | 58.3 | 1.65 | |||||||||
| 145 | 10 | 53 | 1.5 | |||||||||
| 181 | 12.5 | 45.9 | 1.3 | |||||||||
| GLDS-20A | 100 | 7 | 84.7 | 2.4 | 15/20 | 1050 | 700 | 1000 | 450 | 3/4″ | ||
| 116 | 8 | 77.7 | 2.2 | |||||||||
| 145 | 10 | 74.2 | 2.1 | |||||||||
| 181 | 12.5 | 63.6 | 1.8 | |||||||||
| GLDS-25A | 100 | 7 | 109.5 | 3.1 | 18.5/25 | 1250 | 850 | 1100 | 620 | 1″ | ||
| 116 | 8 | 102.4 | 2.9 | |||||||||
| 145 | 10 | 95.3 | 2.7 | |||||||||
| 181 | 12.5 | 81.2 | 2.3 | |||||||||
| GLDS-30A | 100 | 7 | 134.2 | 3.8 | 22/30 | 1250 | 850 | 1100 | 620 | 1″ | ||
| 116 | 8 | 127.1 | 3.6 | |||||||||
| 145 | 10 | 113 | 3.2 | |||||||||
| 181 | 12.5 | 88.3 | 2.5 | |||||||||
| GLDS-40A | 100 | 7 | 187.1 | 5.3 | 30/40 | 1350 | 850 | 1040 | 680 | 1-1/2″ | ||
| 116 | 8 | 176.6 | 5 | |||||||||
| 145 | 10 | 151.8 | 4.3 | |||||||||
| 181 | 12.5 | 127.1 | 3.6 | |||||||||
| GLDS-50A | 100 | 7 | 233 | 6.6 | 37/50 | 1550 | 1571 | 1330 | 850 | 1-1/2″ | ||
| 116 | 8 | 218.9 | 6.2 | |||||||||
| 145 | 10 | 201.3 | 5.7 | |||||||||
| 181 | 12.5 | 162.4 | 4.6 | |||||||||
| GLDS-60A | 100 | 7 | 282.5 | 8 | 45/60 | 1550 | 1571 | 1330 | 850 | 1-1/2″ | ||
| 116 | 8 | 271.9 | 7.7 | |||||||||
| 145 | 10 | 243.6 | 6.9 | |||||||||
| 181 | 12.5 | 211.9 | 6 | |||||||||
| GLDS-75A | 100 | 7 | 370.8 | 10.5 | 55/75 | 1950 | 1270 | 1620 | 1800 | 2″ | ||
| 116 | 8 | 346 | 9.8 | |||||||||
| 145 | 10 | 307.2 | 8.7 | |||||||||
| 181 | 12.5 | 257.8 | 7.3 | |||||||||
| GLDS-100A | 100 | 7 | 480.2 | 13.6 | 75/100 | 1950 | 1270 | 1620 | 1900 | 2″ | ||
| 116 | 8 | 459 | 13 | |||||||||
| 145 | 10 | 399 | 11.3 | |||||||||
| 181 | 12.5 | 356.6 | 10.1 | |||||||||
| GLDS-125A | 100 | 7 | 572 | 16.2 | 90/125 | 2450 | 1600 | 1740 | 1950 | 2″ | ||
| 116 | 8 | 543.8 | 15.4 | |||||||||
| 145 | 10 | 466.1 | 13.2 | |||||||||
| 181 | 12.5 | 395.5 | 11.2 | |||||||||
| Motor Efficiency Class: Ultraefficient/IE3/IE2 as per your required | ||||||||||||
| Motor Protection Class: IP23/IP54/IP55 or as per your required | ||||||||||||
| Certification: CE/ISO9001 | ||||||||||||
| Voltage: 380V/3PH/50HZ/60HZ, 220V/3PH/50HZ/60HZ, 400V/3PH/50HZ/60HZ, 440V/3PH/50HZ/60HZ, 415V/3PH/50HZ/60HZ, 230V/3PH/50HZ/60HZ, dual voltage is also ok | ||||||||||||
Equipment manufacturing industry: spray painting, spray washing machine, mechanical retreat mold, driving the assembly tools, drilling machine, hammer, lifting driving, combined tools, reamer, run run run, riveter screwdriver rotary drive, forging, metal forming press run operation, blasting, spraying, transmission, driving technology process.
Automobile manufacturing industry: spray cleaning parts, driving the assembly tool, fixture tools, lifting hoist crane, pneumatic control, forging hammer pressing workshop, casting workshop, metal workshop blast spray.
Beverage factory: running, bottle washing machine barrel turn, cHangZhou machine internal spraying, cleaning, food industrial used gas drying bottle, automatic operation, ash dust.
Cement manufacturing: Lime storage ventilation, cement slurry stirring and driving, cement bag clean sealing driving, raw material mixing, tipper operation, cleaning equipment, clinker cooling, conveying of cement and coal, cement kiln cleaning, vehicle and vessel handling, lifting and hoisting device, pneumatic control.
Chemical plant: ventilation and mixing, separation tower with gas, cleaning equipment, combustion gas, transportation, lifting liquid, spraying and cleaning pipe, pneumatic control, process gas, liquid transport.
Power plant: air cleaning pipeline, blowing smoke scale, cleaning of boiler and condenser pipe, jet cleaning, coal, sewage removal transmission, pneumatic control.
Hydropower plant maintenance: engine control, lock, drive controller, drive lubrication pump, driving lock, starting control, cleaning rubbish net.
The food industry (general application): mixing liquid, fermentation tank with gas (oxygen), cleaning equipment, with nozzle with nozzle cleaning container transport, food, raw materials, filtration dehydration.
Forging shop: oxygen skin, door, air curtain lifting hoist and hoist, driving the bending and straightening machine, driving clutch brake and a clamping device, the driving hammer, drive the fuel regulator.
Casting: hot metal car positioning, cleaning equipment, transporting sand, drive pneumatic tools, ramming machine, grinding machine, lifting hoist and elevator, pneumatic pick, tamping machine, steel than the brush, sandblasting, sieve sand, mud core.
Glass factory: blow bottle and glass, blow lamp and electronic tube, combustion gas, raw material, light transmission glass etching and drilling, conveying the glass, pneumatic control, vacuum hanging board.
Iron and steel plant: stirring the solution, oxygen with gas, HangZhou gas, converter with skip positioning, a sediment chamber drilling, unloading bags, open hearth CHINAMFG flue cleaning, driving clutch and brake, drive door, driving loading and transporting device, drive lubrication system, drive pneumatic tools, pneumatic pick, grinding wheel machine, lifting hoist and hoist, sandblasting, blast furnace, vacuum degassing furnace.
Wood, furniture processing: spray cleaning, gas lifting, bending, straightening, disseminated wood clamping clamp, pneumatic tools, carving tools, drilling machine, polishing machine, polishing machine, sand blasting, spray painting, spray device.
Sheet metal workshop: stirring the solution, transportation, jet cleaning, drive chip packaging press, driving plate chuck clutch and positioner, pneumatic tools, pneumatic pick, finishing hammer, drill, grinding wheel machine, crane and elevator, combination tools, riveting machine, sand blasting, spray, spray paint, lubricant container leakage detecting.
The mine ventilation gas, drilling: big hole, gas water removal, filtration fine crumbs, pneumatic hoist driven rock drill rig,,, blow hole, piling machine, drilling machine.
Oil refinery: combustion gas, emptying and cleaning oil, crane and elevator, drive control system, catalyst recycle, sandblasting, painting.
Papermaking factory: clean air equipment, crane and hoist, pool anti icing, roll feeding, pressing paper products, drive clutch, drive off paper machine, paper feeding through the machine, pneumatic control, pressure head box, demolition, removal of waste paper head box, vacuum drying.
Pharmaceutical manufacturers: mixing liquid, antibiotic fermentation with gas (oxygen), transmission of raw materials, raw materials, mixing and stirring driven, pneumatic control, air jet pulverization, spray drying, vacuum drying and vaporization of liquid, transmission.
Plant maintenance: jet cleaning, drive tools (hammer, concrete vibrator, drill, grinding wheel machine, crane, paving stone machine, riveter, oxide skin to wrench, winding machine, sand blasting, spray), metal, spray, spray system.
Textile factory: mixing liquid, gas lifting, moist, operation pressure accumulator, spray, spray system, transfusion.
Rubber factory: clean mold and mechanical devices, gas lifting, demoulding, mold, pneumatic control, spraying.
ZheJiang GLADES MACHINERY EQUIPMENT CO.,LTD.is located in HangZhou -logistics city , with the advantage of rapid transportation of goods. The company covers an area of more than 20 thousand square meters.with an annual output value of 6 million US dollars and fixed assets more than 10 million US dollars.
Glades’s primary businesses focus in following key areas:Oil-injected rotary screw compressors (Fixed speed and variable speed; normal and low pressure),Oil free screw air compressors (Scroll type, dry type, water-lubricated type),Energy Saving Screw Air Compressor(PM VSD screw air compressor,Two Stage Screw Air Compressor,Scroll screw air compressor),Portable screw air compressors ( electric motor powered),Air treatment equipment (Air dryers, air filters and air receiver tank) .At Glades, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. Glades has been exporting to more than 35 countries across the globe.
Upholding the core concept of “Reliable Carrying Trust”, ZheJiang Glades strives to provide the most reliable products and services through continuous innovation, so that customers can continue to obtain the maximum value for their returns.
Advantages:
Large displacement: Displacement 10% higher than ordinary piston compressor.
Energy-saving: Compared with piston air compressor, this series of models for the new national standard 2 energy efficiency products, excellent energy saving.
Easy to operate: 24 hours unattended all day work, free load automatically start, full load automatically shut down.
Strong stability:Under long time working, displacement and pressure stable, no crash phenomenon, low failure rate.
FAQ:
Q1:Where is your factory located?
A:Our factory is located in HangZhou city which nears HangZhou port about 2 hours.
Q2:How many air compressors do you produce everyday?
A: We can produce 100 pieces everyday.
Q3: Can you use our brand?
A: Yes, OEM/ODM is available.
Q4:How about your after-sales service?
a.Provide customers with installation and commissioning online instructions.
b.Well-trained engineers available to overseas service.
c.CHINAMFG agents and after service available.
Q5:What’s your delivery time?
Generally 15 to 20 days, if urgently order, pls contact our sales in advance.
Q4: Why should I choose you?
1. 24/7 after sales service support in different languages;
2. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center;
3. Technical training for customers in Glades air compressor factory or working site;
4. Plenty of original spare parts with proven quality are all available.
5.All kinds of technical documents in different languages.
| After-sales Service: | 24 Hours Online Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
Can Water-Lubricated Compressors Be Used in High-Pressure Applications?
Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:
Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.
The ability of a water-lubricated compressor to operate at high pressures depends on several factors:
- Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
- Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
- Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
- Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.
It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.
When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.
.webp)
Can Water-Lubricated Compressors Be Integrated into Existing Systems?
Yes, water-lubricated compressors can be integrated into existing systems, but certain considerations need to be taken into account. Here’s a detailed explanation of integrating water-lubricated compressors into existing systems:
Space and Compatibility:
- Physical Space: Before integrating a water-lubricated compressor into an existing system, it’s important to assess the available physical space. Water-lubricated compressors may require additional components such as water pumps, filters, and separators, which need to be accommodated within the existing system layout.
- Compatibility: Compatibility between the water-lubricated compressor and the existing system is crucial. Factors such as pressure ratings, flow rates, electrical requirements, and control systems should be evaluated to ensure a seamless integration. It may be necessary to make modifications or upgrades to the existing system to achieve compatibility.
Water Supply:
- Water Source: Integrating a water-lubricated compressor requires a suitable water source. The availability of a clean and reliable water supply should be assessed. The water source can be from a municipal water supply, a well, or other water storage systems depending on the specific requirements of the compressor.
- Water Treatment: If the existing water supply does not meet the necessary quality standards for the water-lubricated compressor, water treatment systems may need to be installed. Water treatment can involve filtration, softening, or chemical treatment to ensure the water is clean and suitable for lubrication.
Installation and Configuration:
- Professional Installation: Integrating a water-lubricated compressor into an existing system typically requires professional installation. Qualified technicians or engineers with experience in water-lubricated compressors should handle the installation process to ensure proper configuration and alignment with the existing system.
- Piping and Connections: The installation may involve connecting the water-lubricated compressor to the existing piping system. Proper sizing, materials, and connections should be used to maintain the integrity of the system and prevent leaks or pressure losses.
System Performance and Optimization:
- System Evaluation: After integrating the water-lubricated compressor, it’s important to evaluate the overall performance of the system. This includes assessing the compressor’s efficiency, lubrication effectiveness, cooling capacity, and any potential impacts on the existing components.
- System Adjustments: Depending on the findings of the system evaluation, adjustments or fine-tuning may be necessary to optimize the performance of the integrated water-lubricated compressor. This can involve adjusting operating parameters, control settings, or making additional modifications to enhance system efficiency and reliability.
Overall, integrating water-lubricated compressors into existing systems is possible with proper planning, evaluation, and professional installation. Considering factors such as space availability, compatibility, water supply, installation requirements, and system optimization will help ensure a successful integration and the effective operation of the water-lubricated compressor within the existing system.
.webp)
Advantages of Using Water as a Lubricant in Air Compressors
Water can be used as a lubricant in air compressors, offering several advantages over traditional lubricants such as oils or synthetic lubricants. Here are some of the advantages:
- Cost-effective: Water is a readily available and inexpensive resource, making it a cost-effective lubricant option for air compressors. Compared to oils or synthetic lubricants, water is significantly cheaper, which can result in cost savings for businesses and industries that heavily rely on air compressors.
- Environmentally friendly: Water is a non-toxic and environmentally friendly lubricant. It does not contain harmful chemicals or pollutants that can contribute to air or water pollution. Using water as a lubricant in air compressors reduces the risk of contamination and minimizes the environmental impact associated with traditional lubricants.
- Improved heat dissipation: Water has excellent heat transfer properties. It can absorb and dissipate heat more efficiently compared to oils or synthetic lubricants. Air compressors generate heat during operation, and using water as a lubricant helps to dissipate this heat effectively, preventing overheating and prolonging the lifespan of the compressor.
- Reduced fire hazard: Compared to oils or synthetic lubricants, water has a significantly higher flash point, which means it is less likely to ignite or contribute to fire hazards. This fire-resistant property of water makes it a safer lubricant choice, especially in environments where fire safety is a concern.
- Lower maintenance requirements: Water does not leave behind sticky residues or deposits, as some oils or synthetic lubricants might. This characteristic reduces the maintenance requirements of air compressors. It simplifies the cleaning process and reduces the frequency of lubricant changes, resulting in reduced downtime and maintenance costs.
Overall, using water as a lubricant in air compressors can offer significant advantages in terms of cost-effectiveness, environmental friendliness, heat dissipation, fire safety, and maintenance requirements.


editor by CX 2023-12-11
China wholesaler 22kw 30HP VSD Permanent Magnet Variable Frequency Integrated Screw Air Compressor wholesaler
Product Description
Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!
Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP
Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug
Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.
Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models
SPECIFICATION
| MODEL | LB-30-8 |
| Ambient Temperature | -5ºC to +45 ºC |
| Max Pressure (bar) | 8 |
| Air Delivery (m3/min) | 3.6 |
| Compression Stage | Single Stage Compression |
| Cooling Method | Air Cooled |
| Discharge Temperature (ºC) | ≤ 75ºC |
| Oil Cotent (ppm) | ≤3 |
| Transmission Method | Direct Drive(Non-Coupling) |
| Sound Level dB(A) | 68±3 |
| Lubricating Oil Amount | 12.5L |
| Motor Power | 22KW/30HP |
| Motor Level Of Protection | IP55 |
| Voltage | 380V/3ph/50Hz |
| Dimensions (mm) | 1060×790×1160(L*W*H) |
| Weight | 450KG |
| Discharge Outlet Thread | 1” |
| After-sales Service: | Video, Live, Site Support |
|---|---|
| Warranty: | 2-Year-Warranty |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Installation Type: | Stationary Type |
| Samples: |
US$ 2250/set
1 set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-11-01
China best 50HP 37kw Permanent Magnet Motor Variable Frequency Oil Less Screw Air Compressor best air compressor
Product Description
| Model | LGPM-10HP | LGPM-15HP | LGPM-20HP | LGPM-30HP | LGPM-50HP | LGPM-60HP |
| Motor Power(KW) | 7.5 | 11 | 15 | 22 | 37 | 45 |
| Capacity/Pressure (m3/min/MPa) |
1.2/0.7 | 1.71/0.7 | 2.3/0.7 | 3.8/0.7 | 6.4/0.7 | 8.5/0.7 |
| 1.1/0.8 | 1.65/0.8 | 2.25/0.8 | 3.6/0.8 | 6.2/0.8 | 8.0/0.8 | |
| 0.9/1.0 | 1.32/1.0 | 1.8/1.0 | 3.0/1.0 | 5.6/1.0 | 7.5/1.0 | |
| 0.8/1.2 | 1.1/1.2 | 1.6/1.2 | 2.6/1.2 | 5.0/1.2 | 7.0/1.2 | |
| LubricLGPMing oil(L) | 12 | 16 | 16 | 22 | 26 | 26 |
| Noise db(A) | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 |
| Length(mm) | 780 | 1050 | 1050 | 1300 | 1470 | 1460 |
| Width(mm) | 600 | 700 | 700 | 850 | 1000 | 1000 |
| Height(mm) | 1571 | 1150 | 1150 | 1100 | 1380 | 1380 |
| Weight(Kg) | 215 | 335 | 335 | 465 | 630 | 825 |
| Model | LGPM-75HP | LGPM-100HP | LGPM-125HP | LGPM-150HP | LGPM-175HP | LGPM-200HP |
| Motor Power(KW) | 55 | 75 | 90 | 110 | 132 | 160 |
| Capacity/Pressure (m3/min/MPa) |
10.5/0.7 | 13.2/0.7 | 16.2/0.7 | 21.0/0.7 | 24.6/0.7 | 31.0/0.7 |
| 10.0/0.8 | 13.0/0.8 | 15.8/0.8 | 20.0/0.8 | 23.0/0.8 | 30.0/0.8 | |
| 8.5/1.0 | 10.9/1.0 | 14.0/1.0 | 18.0/1.0 | 21.0/1.0 | 26.0/1.0 | |
| 7.6/1.2 | 9.8/1.2 | 12.8/1.2 | 16.0/1.2 | 18.8/1.2 | 22.0/1.2 | |
| LubricLGPMing oil(L) | 54 | 54 | 72 | 90 | 90 | 90 |
| Noise db(A) | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 |
| Length(mm) | 1900 | 1900 | 1900 | 2571 | 2571 | 2360 |
| Width(mm) | 1250 | 1250 | 1250 | 1590 | 1590 | 1610 |
| Height(mm) | 1600 | 1600 | 1600 | 1810 | 1810 | 1860 |
| Weight(Kg) | 1130 | 1230 | 1325 | 1520 | 1710 | 185 |
ZheJiang Compressor Import & Export Co.,Ltd. is located in the logistics capital of China, 1 of the important
birthplaces of Chinese civilization-HangZhou, ZheJiang Province.
With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and remowed in the industry.
We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition .
With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s
own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation .
Choosing ZheJiang Compressor Import & Export Co.,Ltd.is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !
RFQ:
Q1: Are you factory or trade company?
A1: We are factory. Please check Our Company Profile.
Q2: What the exactly address of your factory?
A2: Xihu (West Lake) Dis. Innovation Park, Zaoyuan Town, HangZhou, ZheJiang , China
Q3: Warranty terms of your machine?
A3: 18 months warranty for the machine,technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes.
Q5: How long will you take to arrange production?
A5: Deliver standard goods within 30days, Other customized goods is TBD.
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
| Lubrication Style: | Oil-less |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-10-30