Product Description
| Model : | Oil Free Series |
| Type: | Dry Oil Free Screw Air Compressor |
| Voltage: | Dry Oil Free Screw Air Compressor |
| Working Pressure: | 8~12.5bar |
| Installed Motor Power: | 5.5~250 Kw |
| Capacity: | 0.2~44.78 m3/min |
| Driven Method: | Direct Driven |
| Power | 380V / 3PH / 50HZ / 60HZ 220V / 3PH / 50HZ / 60HZ 440V / 3PH / 50HZ / 60HZ 415V / 3PH / 50HZ / 60HZ Can be customized |
| Air End: | SKF/SKF |
| Transport Package: | Standard Wooden Packing |
| Electrical control system | Schneider |
| Motor protection grade | IP54 |
| Insulation class | F |
| Outlet Air Humidity | ambient temperature+10ºC |
Product Features
In pharmaceutical, electronic, chemical, microbial fermentation, blow moulding, pressure detection and other industrial production, there are many medium-pressure compressed air to be used to 1.6-4.0 MPa in power plants, naval ships, military and national defense facilities. At present, piston air compressors are mostly used at home and abroad, while piston air compressors are characterized by large vibration, high noise, large leakage and short service life, so their efficiency is very low and the same work is done. The medium pressure oil-free screw machine has compact structure, high working efficiency, low noise, low vibration, easy maintenance, low operating cost and good air quality. At the same time, the series of machines are controlled by micro-computer system. The whole machine has multiple protective performance of pressure, temperature and overload energy.
1.Constant pressure control: high-precision constant pressure control with a pressure fluctuation range within0.01MPa.
2. Variable frequency soft start: remove CHINAMFG current during starting, avoid the power grid impact, prevent the current impact through gradual speed regulation and improve flexibility;
3.No idling: prevent idling of the compressor during running and reduce invalid energy consumption;
3.High performance vector control: low-frequency starting provides a large torque and a low running current, ensuring to get a reasonable torque to drive the air compressor to run stably with the minimum temperature rise of the motor within a wide speed range;
| Model | Working pressure | Capacity | Motor power | Noise dB(A) |
Inlet and outlet pipe dia. of cooling water | Cooling water volume |
Lubricating water |
Dimension(mm) | Net weight | ||
| bar | m3/min | kw/hp | Inlet water temp. 32ºC(T/H) |
L | L*W*H | KGS | |||||
| SGM08 | 8 | 1.17 | 7.5/10 | 58 | 3/4″ | 2 | 10 | 800*800*1100(A) 800*800*1100(W) |
470 | ||
| 10 | 1.05 | ||||||||||
| 12.5 | 0.81 | ||||||||||
| SGM11 | 8 | 1.65 | 11/15 | 60 | 1″ | 2.5 | 26 | 1200*760*1300(A) 1200*760*1300(W) |
580 | ||
| 10 | 1.42 | ||||||||||
| 12.5 | 1.10 | ||||||||||
| SGM15 | 8 | 2.43 | 15/20 | 63 | 1″ | 3.5 | 26 | 1200*760*1300(A) 1200*760*1300(W) |
620 | ||
| 10 | 2.17 | ||||||||||
| 12.5 | 1.80 | ||||||||||
| SGM18 | 8 | 3.13 | 18.5/25 | 65 | 1″ | 4 | 30 | 1400*900*1450(A) 1400*900*1450(W) |
680 | ||
| 10 | 2.82 | ||||||||||
| 12.5 | 2.05 | ||||||||||
| SGM22 | 8 | 3.52 | 22/30 | 65 | 1″ | 5 | 30 | 1400*900*1450(A) 1400*900*1450(W) |
730 | ||
| 10 | 3.21 | ||||||||||
| 12.5 | 2.78 | ||||||||||
| SGM30 | 8 | 5.12 | 30/40 | 67 | 1 1/2″ | 7 | 40 | 1550*1150*1500(A) 1500*1150*1300(W) |
1100 | ||
| 10 | 4.43 | ||||||||||
| 12.5 | 3.63 | ||||||||||
| SGM37 | 8 | 6.30 | 37/50 | 67 | 1 1/2″ | 9 | 40 | 1550*1150*1500(A) 1500*1150*1300(W) |
1150 | ||
| 10 | 5.33 | ||||||||||
| 12.5 | 4.77 | ||||||||||
| SGM45 | 8 | 7.40 | 45/60 | 68 | 1 1/2″ | 10 | 90 | 1800*1300*1750(A) 1800*1300*1680(W) |
1390 | ||
| 10 | 6.30 | ||||||||||
| 12.5 | 5.56 | ||||||||||
| SGM55 | 8 | 9.60 | 55/75 | 70 | 1 1/2″ | 12 | 120 | 1980*1400*1850(A) 1800*1300*1680(W) |
1470 | ||
| 10 | 8.55 | ||||||||||
| 12.5 | 7.67 | ||||||||||
| SGM75 | 8 | 13.00 | 75/100 | 73 | 1 1/2″ | 18 | 120 | 2100*1600*1900(A) 1800*1300*1750(W) |
2250 1630 |
||
| 10 | 11.50 | ||||||||||
| 12.5 | 9.70 | ||||||||||
| SGM90 | 8 | 14.80 | 90/120 | 73 | 1 1/2″ | 20 | 180 | 2400*1600*2000(A) 2200*1550*1800(W) |
2650 2350 |
||
| 10 | 13.90 | ||||||||||
| 12.5 | 12.60 | ||||||||||
| SGM110 | 8 | 19.85 | 110/150 | 78 | 2″ | 24 | 180 | 2700*1600*2100(A) 2200*1550*1800(W) |
2950 2460 |
||
| 10 | 16.66 | ||||||||||
| 12.5 | 15.56 | ||||||||||
| SGM132 | 8 | 23.10 | 132/175 | 78 | 2″ | 30 | 240 | 3000*1700*2250(A) 2200*1550*1800(W) |
3500 2500 |
||
| 10 | 19.97 | ||||||||||
| 12.5 | 16.90 | ||||||||||
| SGM160 | 8 | 28.11 | 160/200 | 80 | 3″ | 35 | 240 | 3000*1800*2100(W) | 3700 | ||
| 10 | 25.45 | ||||||||||
| 12.5 | 22.52 | ||||||||||
| SGM185 | 8 | 33.97 | 185/250 | 80 | 3″ | 38 | 300 | 3000*1800*2100(W) | 3750 | ||
| 10 | 29.00 | ||||||||||
| 12.5 | 25.21 | ||||||||||
| SGM200 | 8 | 36.75 | 200/275 | 80 | 4″ | 42 | 300 | 3100*1850*2100(W) | 3900 | ||
| 10 | 32.78 | ||||||||||
| 12.5 | 29.24 | ||||||||||
| SGM220 | 8 | 39.67 | 220/300 | 80 | 4″ | 47 | 360 | 3100*1850*2100(W) | 4200 | ||
| 10 | 36.75 | ||||||||||
| 12.5 | 29.63 | ||||||||||
| SGM250 | 8 | 43.50 | 250/350 | 80 | 4″ | 53 | 360 | 3100*1850*2100(W) | 4600 | ||
| 10 | 39.30 | ||||||||||
| 12.5 | 34.00 | ||||||||||
| Motor Protection Class:IP54/IP55 or as per your requests. | |||||||||||
| Voltage: 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests. | |||||||||||
| In the external dimensions: “A” means air cooling, and “W” means water cooling. | |||||||||||
Q1: What is the rotor speed for the air end?
A1: 2980rmp.
Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)
Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).
Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.
Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.
Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.
Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.
Q9: Do you have spare parts in stock?
A9: Yes, we do.
Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.
If you are interested in any of our products,please feel free to contact us.
We are looking CHINAMFG to cooperating,growing and developing with your sincerely.
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What Are the Key Components of a Water-Lubrication System in Compressors?
A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:
Water Supply:
- Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
- Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.
Lubrication System:
- Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
- Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
- Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
- Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
- Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.
Control and Monitoring:
- Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
- Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
- Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.
Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.
.webp)
Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?
When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:
Water Quality:
- Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
- Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.
Water Temperature:
- Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
- Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.
Water Treatment:
- Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
- Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.
By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2023-12-12