Tag Archives: hot selling air compressor

China Hot selling High Quality Piston Air Compressor Low Noise Oil Free Portable Oilless Air Compressor 70L mini air compressor

Product Description

 

Product Description

Features:

1. The machine is light ,easy to carry.

2.Without refueling in use process, low energy consumption,simple maintenance and low cost.

3. The machine little vibration, low noise .

4.Compare with similar machines ,the air charging time is faster and the work is reliable.

5. Suitable for food, medical treatment, woodworking decoration, scientific research institutions,and compressed gas as a power source in the filed.

Detailed Photos

Product Parameters

Model

HB12

HB30

HB35

HB70A

Input power(kw)

0.68

0.75

0.85

1.36

Voltage(V/Hz)

220/50

220/50

220/50

220/50

Current(A)

2.8

3.0

3.8

6.8

Rotate speed (rpm/min)

1400

1400

1400

1400

Air intake(L/min)

116

128

150

256

Exhaust pressure(Mpa)

0.8

0.8

0.8

0.7

Noise(db(A))

66

66

68

71

Volume(L)

12

30

35

70

Weight(KG)

18

23

26

45

Dimensions(CM)

53*23*55

54*30*56

64*32*61

70*35*70

Certifications

Company Profile

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2014,sell to Africa(15.00%),Domestic Market(15.00%),Mid East(14.50%),South America(14.00%),South Asia(12.50%),Southeast Asia(10.00%),Central America(10.00%),North America(8.00%). There are total about 11-50 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Air Compressor,Mining Drilling Rig,Water Well Drilling,Hammer,Air Energy Heat Pump

4. why should you buy from us not from other suppliers?
We are the most powerful air compressor equipment and engineering drilling equipment and air energy manufacturers in China with more than 23years production experience,professional R&D team, special after service team, world class sophisticated equipment.

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,DDP,DDU,Express Delivery;
Accepted Payment Currency:USD;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,PayPal,Western Union,Cash;
Language Spoken:English,Chinese,Spanish

Contact Person:

Name:Ivy
 
 

 

After-sales Service: 24hour Online Service
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical

air compressor

Can Water-Lubricated Compressors Be Used in High-Pressure Applications?

Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:

Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.

The ability of a water-lubricated compressor to operate at high pressures depends on several factors:

  1. Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
  2. Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
  3. Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
  4. Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.

It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.

When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.

air compressor

What Is the Role of Filtration in Water-Lubricated Air Compressors?

Filtration plays a crucial role in water-lubricated air compressors, serving several important purposes. Here’s a detailed explanation of the role of filtration in water-lubricated air compressors:

Contaminant Removal:

  • Particle Filtration: Filtration systems in water-lubricated air compressors are designed to remove particles and contaminants from the water. These can include sediment, rust, debris, and other solid particles that may be present in the water supply. Removing these contaminants is essential to prevent blockages, clogging, and damage to the compressor components.
  • Oil Removal: In some cases, water used in compressors may contain traces of oil or hydrocarbons. Filtration systems can also help remove oil and hydrocarbon contaminants from the water, ensuring that the lubrication system remains clean and effective.

Protection of Components:

  • Lubrication System: Filtration prevents contaminants from reaching the lubrication system of water-lubricated air compressors. This helps maintain the cleanliness and integrity of the lubricant, ensuring optimal lubrication performance and minimizing wear on the compressor’s moving parts. Clean and filtered water can enhance the efficiency and lifespan of the compressor’s lubrication system.
  • Heat Exchangers and Cooling Systems: Water-lubricated compressors often rely on heat exchangers and cooling systems to regulate the temperature of the compressed air and the compressor itself. Filtration helps protect these components by preventing the accumulation of debris and contaminants that can hinder heat transfer and reduce the cooling efficiency. Clean water free from particles and contaminants promotes effective heat exchange and cooling.

Prevention of System Fouling:

  • Scaling and Deposits: Filtration systems also help prevent scaling and deposits that can occur when water with high mineral content or hardness is used. These deposits can accumulate on the internal surfaces of the compressor, heat exchangers, or other components, reducing their efficiency and potentially causing operational issues. By removing impurities and controlling mineral content, filtration minimizes the risk of scaling and deposits.

Extended Equipment Lifespan:

  • Component Protection: By effectively removing contaminants, filtration systems contribute to the protection and longevity of water-lubricated air compressor components. Clean and filtered water reduces the risk of component wear, corrosion, fouling, and blockages, ultimately extending the lifespan of the compressor and reducing maintenance and replacement costs.

Regular Maintenance and Monitoring:

  • Filter Replacement: Filtration systems require regular maintenance, including the replacement or cleaning of filters. The frequency of filter replacement depends on factors such as water quality, usage conditions, and the specific requirements of the compressor manufacturer. Regular maintenance ensures that the filtration system continues to effectively remove contaminants and protect the compressor components.
  • Monitoring Water Quality: Alongside filtration, monitoring the quality of the water used in water-lubricated compressors is essential. This can involve periodic water analysis, measurement of key parameters such as pH or conductivity, and visual inspections. Monitoring helps identify any changes in water quality or potential issues with the filtration system, allowing for timely maintenance or corrective actions.

In summary, filtration plays a critical role in water-lubricated air compressors by removing contaminants, protecting components, preventing system fouling, and extending equipment lifespan. By maintaining clean and filtered water, filtration systems contribute to the efficient operation, reliability, and longevity of water-lubricated compressors.

air compressor

Are There Any Downsides to Using Water-Lubricated Air Compressors?

While water-lubricated air compressors offer several advantages, there are also some downsides to consider when using this type of compressor. Here are a few potential drawbacks associated with water-lubricated air compressors:

  1. Water quality requirements: Water-lubricated compressors are highly dependent on the quality of the water used for lubrication. The water should be free from contaminants, minerals, and impurities that can affect the compressor’s performance or cause corrosion. Ensuring the consistent availability of high-quality water may require additional filtration or treatment processes, which can add complexity and cost to the system.
  2. Increased maintenance: Compared to oil-lubricated compressors, water-lubricated models may require more frequent maintenance. Regular checks, cleaning, and monitoring of the water system are necessary to prevent blockages, maintain proper water flow, and ensure the cleanliness of the compressor. This increased maintenance requirement can result in higher operational costs and more downtime for maintenance activities.
  3. Potential for corrosion: While water itself is not corrosive, certain water conditions, such as high mineral content or low pH levels, can promote corrosion within the compressor system. Corrosion can lead to component damage, reduced efficiency, and the need for repairs or replacements. Implementing corrosion prevention measures, such as water treatment or the use of corrosion-resistant materials, may be necessary to mitigate this risk.
  4. Compatibility limitations: Water-lubricated compressors may have limitations when it comes to compatibility with certain materials or gases. For example, in applications where the compressed air comes into contact with sensitive materials or requires specific gas purity, the use of water as a lubricant may not be suitable. In such cases, alternative lubrication methods or compressor types may be more appropriate.
  5. Environmental considerations: While water is generally considered environmentally friendly, the disposal of used water from the compressor system may require proper wastewater management. Depending on local regulations and requirements, additional steps may be needed to ensure compliant and environmentally responsible disposal of the water used for lubrication.

Despite these potential downsides, water-lubricated air compressors continue to be used in various industries and applications due to their specific advantages and suitability for certain environments. It is important to carefully evaluate the specific requirements, operating conditions, and maintenance considerations of a given application to determine whether a water-lubricated compressor is the most suitable choice.

China Hot selling High Quality Piston Air Compressor Low Noise Oil Free Portable Oilless Air Compressor 70L   mini air compressorChina Hot selling High Quality Piston Air Compressor Low Noise Oil Free Portable Oilless Air Compressor 70L   mini air compressor
editor by CX 2023-12-04

China Hot selling engineering diesel portable screw industrial rotary air compressor air compressor for sale

Product Description

COMPS COMPRESSOR (HangZhou) Co., Ltd is a leading CHINAMFG manufacturer in
HangZhou, China. We focus on the research & develop and manufacture of screw air compressors and related after-treatment equipment over 15 years experience.Our screw compressors include air & water cooled compressor, belt & direct driven compressor, permanent magnet inverter compressor, low pressure compressor, oil free compressor, diesel driven portable compressor.Our products have passed ISO933181568
 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China Hot selling engineering diesel portable screw industrial rotary air compressor   air compressor for saleChina Hot selling engineering diesel portable screw industrial rotary air compressor   air compressor for sale
editor by CX 2023-12-02

China Professional Low Noise 22kw 30HP Oil-Free Water Lubricated Screw Air Compressor with Hot selling

Product Description

Product Description

Low Noise 22kw 30hp AC Power Oil-free Water Lubricated Screw Air Compressor 

Model: RW-22A/W
Type: totally oil free water lubrication screw air compressor
Screw type: Single screw
Free air delivery: 3.52 m3/min
Working pressure: 8 bar
Control: Touch screen PLC
Driven: direct
Cooling: by air
Starting method: Frequency conversion start
Lubricating water volume: 30 liters
Electric motor: 30hp 22KW  380v/50hz/3ph,IP54
Discharge temperature: less than ambient +8 ºC
Noise: less than 65 dB(A)
Air outlet size: G1″
Dimension: 1400*900*1450mm
Weight: 745kg

Product Features

1. IE4 motor, save your electricity cost, IP54, B-level temperature rise
is suitable for harsh environments such as large dust and high
temperature;
2. 100% oil free air certified by Germany TUV.
3. Coupling connection, more energy saving.
4. Stainless Steel Pipe.
5. Centrifugal Fan for better cooling effect. 
Optimized shock absorption pad to reduce vibration and noise.
6. Motor overload protection.
7. Dedicated control system, multi-channel pressure sensor and multi-channel temperature sensor to comprehensively detect the running state of the unit; the user interface is more friendly, the control is more accurate and reliable.

Technical parameter
 

Model Air Delivery (m3/min) Power (kW) Lubricating water amount (Liters) Cooling water amount T/Hour Cooling water inlet/outlet diameter Noise dB(A) Outlet diameter Dimension (mm)
8 bar 10 Bar 12.5 bar L*W*H
RW-08A/W 1.17 1.05 0.81 7.5 10 2.0 3/4″ 58 3/4″ 800*800*1200
RW-11A/W 1.65 1.42 1.10 11 26 2.5 1″ 60 3/4″ 1150*755*1340
RW-15A/W 2.43 2.17 1.80 15 26 3.5 1″ 63 3/4″ 1150*755*1340
RW-18A/W 3.13 2.82 2.05 18.5 30 4.0 1″ 65 1″ 1400*900*1450
RW-22A/W 3.52 3.21 2.78 22 30 5.0 1″ 65 1″ 1400*900*1450
RW-30A/W 5.12 4.43 3.63 30 40 7.0 1 1/2″ 67 1 1/4″ 1550*1150*1550(A) 1500*1150*1300(W)
RW-37A/W 6.30 5.33 4.77 37 40 9.0 1 1/2″ 67 1 1/4″ 1550*1150*1550(A) 1500*1150*1300(W)
RW-45A/W 7.40 6.30 5.56 45 90 10.0 1 1/2″ 68 2″ 1980*1300*1760(A) 1800*1300*1670(W)
RW-55A/W 9.60 8.55 7.67 55 120 12.0 1 1/2″ 70 2″ 1980*1300*1760(A) 1800*1300*1670(W)
RW-75A/W 13.00 11.50 9.70 75 120 18.0 1 1/2″ 73 2″ 2100*1600*1900(A) 2200*1500*1800(W)
RW-90A/W 14.80 13.90 12.60 90 180 20.0 1 1/2″ 73 2 1/2″ 2400*1600*2000(A) 2200*1500*1800(W)
RW-110A/W 19.85 16.66 15.56 110 180 24.0 2″ 78 2 1/2″ 3000*1700*2250(A) 2200*1500*1800(W)
RW-132A/W 23.10 19.97 16.90 132 240 30.0 2″ 78 2 1/2″ 3000*1700*2250(A) 2200*1500*1800(W)
RW-160W 28.11 25.45 22.52 160 240 35.0 3H 80 DN80 2700*2800*2050
RW-185W 33.97 29.00 25.21 185 300 38.0 3″ 80 DN80 2700*2800*2050
RW-200W 36.75 32.78 29.24 200 300 42.0 4″ 80 DN100 2700*2800*2050
RW-220W 39.67 36.75 29.63 220 360 47.0 4″ 80 DN100 2700*2800*2050
RW-250W 43.50 39.30 34.00 250 360 58.0 4″ 80 DN100 2700*2800*2050
Note:” A” means air cooling,” W” means water cooling.

 

Field Case

Certifications

Company Profile

ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!

Packaging & Shipping

Payment and delivery

FAQ

Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.

 

Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

 

Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

 

Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
     2. Well-trained engineers available to overseas service.
     3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.

 

Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

 

Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

 

Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

 

Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
     2. Some key parts are imported from overseas
     3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.

 

Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.

 

Q10.How long could your air compressor be used?
A: Generally, more than 10 years.

After-sales Service: Online Support
Warranty: 2 Year
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Are the Safety Considerations When Using Water-Lubricated Compressors?

When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:

  1. Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
  2. Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
  3. Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
  4. Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
  5. Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
  6. Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.

It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.

air compressor

What Is the Role of Filtration in Water-Lubricated Air Compressors?

Filtration plays a crucial role in water-lubricated air compressors, serving several important purposes. Here’s a detailed explanation of the role of filtration in water-lubricated air compressors:

Contaminant Removal:

  • Particle Filtration: Filtration systems in water-lubricated air compressors are designed to remove particles and contaminants from the water. These can include sediment, rust, debris, and other solid particles that may be present in the water supply. Removing these contaminants is essential to prevent blockages, clogging, and damage to the compressor components.
  • Oil Removal: In some cases, water used in compressors may contain traces of oil or hydrocarbons. Filtration systems can also help remove oil and hydrocarbon contaminants from the water, ensuring that the lubrication system remains clean and effective.

Protection of Components:

  • Lubrication System: Filtration prevents contaminants from reaching the lubrication system of water-lubricated air compressors. This helps maintain the cleanliness and integrity of the lubricant, ensuring optimal lubrication performance and minimizing wear on the compressor’s moving parts. Clean and filtered water can enhance the efficiency and lifespan of the compressor’s lubrication system.
  • Heat Exchangers and Cooling Systems: Water-lubricated compressors often rely on heat exchangers and cooling systems to regulate the temperature of the compressed air and the compressor itself. Filtration helps protect these components by preventing the accumulation of debris and contaminants that can hinder heat transfer and reduce the cooling efficiency. Clean water free from particles and contaminants promotes effective heat exchange and cooling.

Prevention of System Fouling:

  • Scaling and Deposits: Filtration systems also help prevent scaling and deposits that can occur when water with high mineral content or hardness is used. These deposits can accumulate on the internal surfaces of the compressor, heat exchangers, or other components, reducing their efficiency and potentially causing operational issues. By removing impurities and controlling mineral content, filtration minimizes the risk of scaling and deposits.

Extended Equipment Lifespan:

  • Component Protection: By effectively removing contaminants, filtration systems contribute to the protection and longevity of water-lubricated air compressor components. Clean and filtered water reduces the risk of component wear, corrosion, fouling, and blockages, ultimately extending the lifespan of the compressor and reducing maintenance and replacement costs.

Regular Maintenance and Monitoring:

  • Filter Replacement: Filtration systems require regular maintenance, including the replacement or cleaning of filters. The frequency of filter replacement depends on factors such as water quality, usage conditions, and the specific requirements of the compressor manufacturer. Regular maintenance ensures that the filtration system continues to effectively remove contaminants and protect the compressor components.
  • Monitoring Water Quality: Alongside filtration, monitoring the quality of the water used in water-lubricated compressors is essential. This can involve periodic water analysis, measurement of key parameters such as pH or conductivity, and visual inspections. Monitoring helps identify any changes in water quality or potential issues with the filtration system, allowing for timely maintenance or corrective actions.

In summary, filtration plays a critical role in water-lubricated air compressors by removing contaminants, protecting components, preventing system fouling, and extending equipment lifespan. By maintaining clean and filtered water, filtration systems contribute to the efficient operation, reliability, and longevity of water-lubricated compressors.

air compressor

Are Water Lubrication Air Compressors More Environmentally Friendly?

Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:

  1. Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
  2. Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
  3. Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
  4. Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
  5. Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.

Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.

China Professional Low Noise 22kw 30HP Oil-Free Water Lubricated Screw Air Compressor   with Hot sellingChina Professional Low Noise 22kw 30HP Oil-Free Water Lubricated Screw Air Compressor   with Hot selling
editor by CX 2023-11-21

China OEM Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr30A/W 30kw with Hot selling

Product Description

Lead Time

Product Description

TR30A/WL 0.4Mpa 4Bar 6.7m3/min 30KW screw type energy-saving low pressure oil free air compressor

Specifications
 

Model Maximum working Pressure FAD Motor Power Noise Pipe diameters of cooling water in and out Quantity of  Quantity of lubricating water Dimension Weight Air outlet
cooling water
 Inlet water L*W*H
32ºC 
Mpa M3/min KW/HP DB  T/H L mm KG
TR30A/WL 0.4 6.7 30/40 66 1 1/2″ 7 50 1650*1180*1505(A)
15.4) optimized design, large rotor, low rotary speed (within 3000r/min), without the gearbox.

direct connection drive, it has a lower rotary speed and longer life compared with dry oil-free screw air compressor(10000r/min-20000r/min).

12. Automatic Cleaning System

The function of automatic water exchange and automatic system cleaning can be realized, and the interior of the compressor is more clean and sanitary.
 

Introduction

Company Information

Package Delivery

 

BACK HOME

Lubrication Style: Oil-free
Cooling System: Water Cooling
Power Source: AC Power
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Single Screw Compressor
Samples:
US$ 9500/set(s)
1 set(s)(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Water-Lubricated Air Compressors Contribute to Energy Savings?

Water-lubricated air compressors can contribute to energy savings in several ways, making them an attractive option for industries looking to optimize their energy consumption. Here are the key ways in which water-lubricated compressors help achieve energy efficiency:

  1. Reduced friction and improved efficiency: Water serves as a lubricant in water-lubricated compressors, creating a thin film between moving parts to reduce friction. This reduces the energy losses due to mechanical friction and improves the overall efficiency of the compressor. Compared to oil-lubricated compressors, water-lubricated models can achieve higher mechanical efficiency, translating into energy savings over the compressor’s operational lifetime.
  2. Elimination of oil vapor carryover: Oil-lubricated compressors require oil filtration systems to prevent oil carryover into the compressed air stream. These filtration systems consume energy and can introduce pressure drops. In contrast, water-lubricated compressors eliminate the need for oil filtration, reducing energy consumption associated with filtration equipment and minimizing pressure losses. This leads to improved system efficiency and energy savings.
  3. Improved heat transfer and cooling: Water-lubricated compressors offer enhanced heat transfer capabilities compared to oil-lubricated counterparts. Water has a higher specific heat capacity and thermal conductivity, allowing for more efficient heat dissipation. This results in lower operating temperatures and reduces the energy required for cooling the compressor. By optimizing heat transfer, water-lubricated compressors can minimize energy consumption associated with cooling systems or air conditioning in compressor rooms.
  4. Optimized system design: Water-lubricated compressors often employ advanced system designs that further enhance energy efficiency. For example, they may incorporate variable speed drive (VSD) technology, which adjusts the compressor’s speed and power consumption based on the actual air demand. This eliminates energy waste associated with constant-speed operation and reduces energy consumption during periods of low compressed air demand. Additionally, water-lubricated compressors may feature optimized internal components and improved air flow dynamics, resulting in reduced energy losses and improved overall system efficiency.
  5. Heat recovery opportunities: Water-lubricated compressors can provide opportunities for heat recovery. The heat generated during compression can be captured and utilized for various heating applications within the facility, such as space heating, water heating, or process heating. By harnessing this waste heat, water-lubricated compressors contribute to energy savings by offsetting the need for additional energy sources for heating purposes.

By combining these energy-saving features, water-lubricated air compressors help optimize energy consumption, reduce operational costs, and minimize the environmental impact associated with compressed air systems. Implementing water-lubricated compressors with a comprehensive energy management strategy can result in significant energy savings and improved overall sustainability for industrial operations.

air compressor

Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?

When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:

Water Quality:

  • Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
  • Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.

Water Temperature:

  • Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
  • Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.

Water Treatment:

  • Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
  • Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.

Manufacturer Recommendations:

  • Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.

By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.

air compressor

Are Water Lubrication Air Compressors More Environmentally Friendly?

Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:

  1. Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
  2. Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
  3. Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
  4. Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
  5. Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.

Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.

China OEM Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr30A/W 30kw   with Hot sellingChina OEM Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr30A/W 30kw   with Hot selling
editor by CX 2023-11-17

China Hot selling 100% Pure Gas No Leakage Oil Free Air Booster Diaphragm Compressor manufacturer

Product Description

100% purity no leakage Oil-free  Booster Gas Diaphragm Compressor  

The diaphragm compressor booster is a special structure of the volume-type compressor with high compression ratio, good leak tightness, compressed gas without lubricating oil and other CHINAMFG impurities contaminated features, So it’s suitable for high purity compression, rare, valuable, inflammable, explosive, toxic, harmful, corrosive, and high pressure gas.

Keepwin produced Helium compressor, Oxygen Compressor, Hydrogen Compressor, Nitrogen Compressor, Recovery H2 Gas compressor, Argon compressor, cylinder filling booster compressor, etc widely used in Petrochemicals, Fine ChemicalsPharmaceutical ChemicalsEnergy ChemicalsMachinery IndustryElectronics IndustryAgricultureAnimal Husbandry and Defense Industry, AstronomyAerospace, Medical and other fields.
.
Advantages of Diaphragm compressor:
1.  Oil-free compression due to the hermetic separation between gas and oil chamber.
2.  Abrasion-free compression due to static seals in the gas stream
3.  Automatic shutdown in case of a diaphragm failure prevents damage
4.  High Compression Ratios-Discharge pressure up to 1000bar.
5.  Contamination Free Compression
6.  Corrosion Resistance
7.  High Reliability

As a displacement compressor with special,diaphragm compressor is characterized by large compression ratio,good sealing performace,and that the compress air will not be polluted by lubricant or other CHINAMFG impurities.Therefore diaphragm compressor is applicable to compress high-purity,rare and precious,flammable and explosive,toxic and hazardous,corrosive and high pressure gases.
Keepwin diaghragm compressors consist of 4 types that are Z,V,L and D type.The exhaust pressure ranges from 1.3 to 100 Mpa. The products are widely used in the industries of national defense,scientific research,petrochemical,nuclear power,parmaceutical,food-stuff and gas separation.

We offer a wide variety and types of diaphragm compressors. You can install these in many different scenarios. It is possible to install the compressors in hydrogen houses between and electrolyzer and a storage system, in businesses to support their needs such as ice cream companies for hydrogenation, at farmers where they use it to produce ammonia or as a fuel at the back of a wind farm or solar farm, and refineries to pressurise the hydrogen before it is being used to clean up the gas or oil. There are also many applications for our H2 gas compressors.

For instance, you can also use the diaphragm compressor in green hydrogen transport applications, energy storage solutions, grid balancing, food processing, and power station cooling. We pride ourselves at ensuring that as many applications of our compressor units use renewable electricity to pressurise the hydrogen.

Each of our H2 compressor units is unique. It is built to your needs all with the latest innovations in hydrogen compression, safety, and operation. We offer different hydrogen flow and pressures all set to match your storage working pressure.

We can pressurise hydrogen into different types of storage systems at 150bar 200 bar, 350 bar (5000 psi), 450 bar, 500 bar, 700 bar (10,000 psi), 900 bar (13,000 psi).

Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
 Clients’ inquiries should contain related parameters 
A. The gas compression medium 
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.

Technical Paramter of Oil Free Diaphragm Compressor

No. Model F.A.D (Nm3/h) Inlet Pressure 
( Mpa)
Exhuast Pressure 
(Mpa)
Power 
(KW)
Speed
r/min
Dimension
(L×W×H)mm
N.W 
Weight (t)  
Voltage
V
 
15 GZ-45/150~350 45 10~20 35 7.5 400 1610*790*1380 0.55 380  
16 GZ-5/30~400 5 3 40 5.5 400 1560*790*1470 0.55 380  
17 GZ-30/32~170 30 3.2 17 7.5 400 1550*650*1530 0.7 380  
18 GZ-600/75~83 600 7.5 8.3 11 400 1780*1050*1750 1.3 380  
19 GZ-85/100~350 85 5~25 35 18.5 400 1900*1240*1760 1.6 380  
20 GZ-150/150~350 150 15 35 18.5 400 1780*1050*1750 1.8 380  
21 GZ-40/7~30 40 0.7 3 7.5 400 1653*1372*1470 0.9 380  
22 GZ-100/20~35 100 2 3.5 5.5 400 1330*750*1530 0.9 380  
23 GV-110/8~150 110 0.8 15 30 400 2370*1458*1630 3 380  
24 GV-150/3.5~30 150 0.35~0.55 3 30 400 2543*1835*2036 3.21 380  
25 GV-60/0.38~9.3 60 0.038 0.93 15 400 2030*1520*1750 72 380  

Main technical data

Cylinder 
All the cylinders comprise upper plate, diaphragms, and cylinder body etc. The diaphragms are clamped between the cylinder cover and cylinder body. The cylinder cover and cylinder body each has a concave recess hollowed out in their contacting faces. The gas cylinder is formed between cylinder cover concave recess and diaphragms. Both suction valve and discharge valve are fitted on the upper plate. Among of them, the discharge valve is located on the center of the upper plate. The evenly located small oil holes are on the cylinder body to deliver the oil pressure inside the oil cylinder to the bottom of diaphragms (each diaphragm compressor’s cylinder has 3 piece diaphragm.) 

Pressure Regulating Valve 
The oil pressure of oil cylinder is regulated by the tension of the valve spring.In case the oil pressure is higher than the regulated value, turn the regulating bolt counter-clockwise to loosen the spring tension, but turn the regulating bolt clockwise to tighten the spring, when the oil pressure is lower than the regulated value. When the oil pressure meets the required value, the regulating bolt must be locked with a lock-nut. The oil pressure of the oil cylinder shall always be higher than the discharge pressure by 15~20%. But the oil and gas differential pressure shall not be lower than 0.3MPa or higher than 1.5MPa. 

Cooler
The cooler structure is the double-wall pipe type. The circular space between the outer and inner pipe is the cooling water passage and the inner pipe is the gas passage. Normally the water inlet port is at the lower side and the water outlet port is at the upper side. The flow direction of cooling water and gas is on the contrary.

Oil Pressure Measuring Device 
The measuring device of oil cylinder discharge pressure consists of shock-proof pressure gauge, check valve and unloading valve. The case of the pressure gauge is totally airproof and filled with damping liquid. The inner devices of gauge is immersed in the liquid, which makes the pressure gauge hands stable through the function of the viscosity of damping liquid. The unloading valve is fitted under the gauge to discharge the remained air in the oil pipeline   and to unload the oil pressure gauge. Also the check valve connecting with oil cylinder through pipeline is fitted under the unloading valve.   

Oil pipes 
Oil pipes consist of lube oil pipe and oil pressure secure system.

The lubrication for the driving device adopts gear oil pump circulation pressure lubricating. The lube oil stored in the frame oil tank enters into the gear oil pump after being filtered and is pressed into the oil holes in the crankshaft through the gear oil pump to lubricate the crankshaft friction surface. At the same time, part of the lube oil reaches the crosshead pin and crosshead along the oil holes in the connecting rod to lubricate the friction surface. The oil pressure of gear oil pump shall be kept between 0.3~0.5Mpa, and the bearings at the 2 ends of crankshaft is splash lubricated. 
Oil pressure secure system consists of oil compensating pipe, pressure-measuring pipe and oil return pipe. The oil output from the oil compensating pump will supplement oil for compressor cylinders through the oil compensating pipe and the excess oil returns to the crankcase through the pressure-regulating valve.

FAQ
Q1: What’s your delivery time?
A: Generally 5-10 days if the goods are in stock. Or it is 20-35 days if the goods are not in stock, it is according to quantity.

Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. 

Q3: How long could your air compressor be used?
A: Generally, more than 10 years.

Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience.And also we can do ODM for you.

Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.

Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.

Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service. 

Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.

How to contact with us?
Send your Inquiry Details in the Below, or Click “Send inquiry to supplier” to check more other Gas Compressor machine equipment!

 

Lubrication Style: Oil-free
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Structure Type: Closed Type
Compress Level: Single-Stage
Samples:
US$ 19888/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China Hot selling 100% Pure Gas No Leakage Oil Free Air Booster Diaphragm Compressor   manufacturer China Hot selling 100% Pure Gas No Leakage Oil Free Air Booster Diaphragm Compressor   manufacturer
editor by CX 2023-11-08

China Hot selling Silent 75L/Min Portable Oil Free Air Compressor for 5L Oxygen Concentrator manufacturer

Product Description

Product Parameter

ITEM NO

GLE280A

Name

Oil free air compressor

Packing

2 pcs / carton case , 54 pcs / pallet

Weight

6.0 kg

Dimension

235*101*163 mm

Installation size

83*148 mm

Air flow rate  (L/min@bar)

>=75 L/min @2 bar

 

 

 

 

 

Technical Specification

Voltage :220V 50Hz /60Hz ; 110v 60Hz ; 

Power: <=320 W ; 

Rated air flow rate: >=75 L/min @2 bar ; 

Rate working pressure : 2 bar ;
Restart pressure : 0 bar; 

Noise : ≤52dB(A) ; 

Speed: 1440rpm /1700 rpm ; 

Temperature : -5ºC-40ºC ; 

Thermal protector : 135ºC ;
Insulation class: B 

 

Accessories : 1x capacitor , 2xL fittings and 1x safe valve

After-sales Service: on Line Support and Free Spare Parts
Warranty: Two Years
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Horizontal
Samples:
US$ 65/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Hot selling Silent 75L/Min Portable Oil Free Air Compressor for 5L Oxygen Concentrator   manufacturer China Hot selling Silent 75L/Min Portable Oil Free Air Compressor for 5L Oxygen Concentrator   manufacturer
editor by CX 2023-11-06

China factory Permanent Magnetic Frequency Adjustable Screw Air Compressor with Hot selling

Product Description

Permanent magnetic frequency adjustable air compressor

Advantages of twin screw main machine :
1. Adopt the most advanced technical speed regulating electric motor-permanent magnetic motor, efficiency can be up to 97%, higher by 3%-4% than common frequency conversion device and motors type, saving energy obviously.
2. Permanent magnetic motor and the screw compression main devise adopt embedded integrated direct-connecting structure, without coupling part or transmission gear, ensure 100% transmission efficiency.
3. Permanent magnetic electric motor is without motor bearing or sleeve, so no need lubricating grease, no concern alignment problem, compact structure, convenient use and maintenance.
4. The whole machine work in frequency conversion state, and can operate frequency modulation according to the client’s actual requirement of air consumption, realizing high efficiency and energy saving.
5. Machine starting on frequency conversion state, greatly reducing the impact to the power grid equipment, avoiding of damage to the electric equipment, and saving electric energy when starting.
6. No need to set working pressure up and bottom limit value, can operate by regulating the frequency at the setting pressure point to stabilize the pressure, so can save electric energy by 10%-15%.
7. Compared with the fixed speed compressor, our compressor can save energy by 30%; compared with the common frequency compressor, our compressor can save energy by 5%-10%.

Advantages of the whole air compressor unit:
1. Approved by ISO9001certificate, SGS, CE and etc..
2. Adopt world famous brand of twin-screw main machine, high efficiency, reliable and long use life.
3. Adopt world famous brand of air intake filter, oil filter, air and oil separator, realize high filtration accuracy, compressed air oil content under 3ppm, reach to international advanced standard level.
4. Equip with the most advanced air control system. Adopt air intake valve, intelligent control system and pressure sensor combined control method, can operate by ON and OFF 2 point, stepless air capacity control system, time-delay stop and automatically start device 3 air capacity control method, can meet different clients demand.
5. Intelligent microcomputer control system, Chinese and English language operation interface, malfunction display, alarm and machine stop automatically.
6. Adopt high quality and world famous brand of main components, like UK APD oil filter, America AMOT temperature controlling valve, SCHNEIDER electric parts and etc., high efficiency, reliable and long use life.

Technical parameter of CHINAMFG air compressor:

Model Exhause pressure (Mpa) Air displacemen (m3/min) Power (Kw) Noise (dBa) Dimensions (mm) Outlet pipe size Weight (Kg)
TKLYC-7F 0.7/0.8/1.0 1.23/1.16/1.02 7.5 65±3 840*670*925 G3/4 350
TKLYC-11F 0.7/0.8/1.0 1.65/1.62/1.4 7.5 65±3 1000*820*1145 G3/4 390
TKLYC-15F 0.7/0.8/1.0 2.65/2.24/2.1 15 65±3 1300*850*1257 G1 410
TKLYC-18F 0.7/0.8/1.0 3.1/3.0/2.7 18.5 65±3 1300*850*1257 G1 440
TKLYC-22F 0.7/0.8/1.0 3.8/3.7/3.3 22 65±3 1300*850*1258 G1 650
TKLYC-30F 0.7/0.8/1.0 5.3/5.1/4.5 30 68±3 1600*1100*1430 G1 1/2 800
TKLYC-37F 0.7/0.8/1.0 6.7/6.5/5.7 37 68±3 1600*1100*1430 G1 1/2 850
TKLYC-45F 0.7/0.8/1.0 8.6/8.0/7.1 45 68±3 1600*1100*1430 G1 1/2 900
TKLYC-55F 0.7/0.8/1.0 10.3/10.1/9.3 55 72±3 1750*1150*1500 DN50 1650
TKLYC-75F 0.7/0.8/1.0 14.0/13.5/12.5 75 72±3 1750*1150*1500 DN50 1800
TKLYC-90F 0.7/0.8/1.0 17.2/15.9/14.0 90 72±3 2000*1150*1680 DN50 1950
TKLYC-110F 0.7/0.8/1.0 21.4/19.9/18.1 110 73±3 2300*1540*1900 DN80 2500
TKLYC-132F 0.7/0.8/1.0 24.6/23.8/22.1 132 73±3 2300*1540*1900 DN80 2600
TKLYC-160F 0.7/0.8/1.0 28.7/27.1/25.2 160 75±3 2900*1540*2120 DN80 3600
TKLYC-185F 0.7/0.8/1.0 33.5/30.5/27.0 185 76±3 3100*1940*2389 DN80 4200
TKLYC-200F 0.7/0.8/1.0 36.5/33.5/30.6 200 78±3 3100*1940*2389 DN100 4400
TKLYC-250F 0.7/0.8/1.0 45.3/43.0/38.1 250 78±3 3400*2050*2330 DN100 4900

Our factory and workshop:

After sales service:
1. Providing professional air compression program designing for free.
2. Providing our factory original machine parts at lowest price after machine sales.
3. Providing training and guidance for free, customers can send their staff to our factory to learn how to operate the machines.
4. Warranty period: the screw main machine is 1 year, the bearing is 1 year, the wear parts of air intake valve, electric components, electromagnetic valve, rate valve are 6 months
5. The air filter, oil filter, oil-water separator, lubricating oil, rubber parts and etc. are not included in warranty range.

Certification and patents of our air compressor

 

FAQ:
Q1: Are you factory or trade company?  
A1: We are factory.
Q2: Warranty terms of your machine? 
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines? 
A3: Yes, of course.
Q4: How long will you take to arrange production? 
A4: 380V 50HZ we can delivery the goods within 20 days. Other electricity or other color we will delivery within 30 days.
Q5: Can you accept OEM orders? 
A5: Yes, with professional design team, OEM orders are highly welcome!

Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Twin-Screw Compressor
Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China factory Permanent Magnetic Frequency Adjustable Screw Air Compressor   with Hot sellingChina factory Permanent Magnetic Frequency Adjustable Screw Air Compressor   with Hot selling
editor by CX 2023-10-31

China Hot selling CHINAMFG Rand Oil Free Screw Air Compressor IRN200H-OF with Great quality

Product Description

 

Ingersoll Rand Oil Free Screw Air Compressor
Model: IRN200H-OF
 

 

Ingersoll Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands-including Club Car , CHINAMFG Rand , CHINAMFG King and Trane -work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a $13 billion global business committed to a world of sustainable progress and enduring results.
Ingersoll Rand, IR, the IR logo, PAC software, V-Shield and Ultra Coolant are trademarks of CHINAMFG Rand, its subsidiaries and/or affiliates. All other trademarks are the property of their respective owners. CHINAMFG Rand compressors are not designed, intended or approved for breathing air applications. CHINAMFG Rand does not approve specialised equipment for breathing air applications and assumes no responsibility or liability for compressors used for breathing air service. Nothing contained on these pages is intended to extend any warranty or representation, expressed or implied, regarding the product described herein. Any such warranties or other terms and conditions of sale of products shall be in accordance with CHINAMFG Rand’s standard terms and conditions of sale for such products, which are available CHINAMFG request. Product improvement is a continuing goal at CHINAMFG Rand. Any designs, diagrams, pictures, photographs and specifications contained within this document are for representative purposes only and may include optional scope and/or functionality and are subject to change without notice or obligation.

Our company’s purpose – to help make life better by relying on us – and the set of values that define us are the foundation of our company’s culture and success. We think and act like owners, taking responsibility for our own actions and always striving to care for our neighbors and create a brighter, healthier shared planet for everyone. We are committed to the success of our customers. Our goal is to operate with clarity and straightforwardness, building lifelong, ongoing and meaningful connections with our customers.

We are driven by a spirit of action and an entrepreneurial spirit of innovation and progress; we accept and embrace the many challenges that come with such responsibility. We speak honestly, admit mistakes, and always strive for openness and clarity. We have bold ambitions while moving CHINAMFG with humility and integrity, striving to earn trust every day. We have the expertise and experience to solve the toughest problems, but no matter how difficult the challenge, we are always sincere and humble. We are committed to fostering team innovation and cultivating and celebrating a culture that embraces diverse opinions, backgrounds and experiences. Employees who are driven by our purpose and values are an unstoppable force that strengthens our ability to deliver benefits to our stakeholders and ensure the long-term health and safety of our company.Bestrand is a leading supplier of compressed air system. Past 10 years, we established very good partnership with CHINAMFG Rand. We have provided all kinds of products from CHINAMFG Rand include air compressor, after treatment, spare parts to customers all over the world. Pls feel free to contact us for a quote. 

 

Lubrication Style: Lubricated
Cooling System: Air Cooling or Water Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Hot selling CHINAMFG Rand Oil Free Screw Air Compressor IRN200H-OF   with Great qualityChina Hot selling CHINAMFG Rand Oil Free Screw Air Compressor IRN200H-OF   with Great quality
editor by CX 2023-10-27

China Hot selling Stationary Inverter Screw Air Compressors 7.5kw 10HP Electric Industrial Compressor Machine best air compressor

Product Description

Stationary Inverter Screw Air Compressors 7.5KW 10HP Electric Industrial Compressor Machine

Industrial air compressor small size, reasonable layout, convenient maintenance and use, suitable for direct use on the production site, and small floor area.

Comparing to normal variable speed motor, the permanent magnet synchronous motor performs with even better energy efficiency. Especially in the low-speed condition, it can still maintain a high motor efficiency. 1.New design, new structure, stable quality,it has good heat dissipation .
2.Comprehensive upgrade of the manufacturing process, high-cost performance,good noise reduction and mute effect and long life.
3.Permanent magnet variable frequency motor, which is highly efficient and energy-saving.

Product Description

Model Air pressure Mpa F.A.D m³/min Rated power KW Noise                           dB Drive method Start method Outlet valve
SR-VF7.5 0.8 1.1 7.5 ≤76 Direct Frequency conversion start R1/2
1 1
13 0.8
1.6 0.5
SR-VF11 0.8 18 11 R3/4
1 1.6
1 1.3
1.6 0.7
SR-VF15 0.8 2.3 15
1 2.1
1 1.7
1.6 1.2
SR-VF22 0.8 3.6 22 ≤80 R1
1 3.2
1 2.3
1.6 2.0
SR-VF30 0.8 5.0 30 R1 1/2
1 3.5
1 3.3
1.6 2.6
SR-VF37 0.8 6.1 37
1 4.8
1.3 4.5
1.6 3.1
SR-VF45 0.8 7.5 45 ≤85
1 6.2
1 6.0
1.6 4.5
SR-VF55 0.8 9.25 55 R2
1 7.3
1 7
1.6 5.4
SR-VF75 0.8 12 75
1 9.2
1 8.9
1.6 6.8
SR-VF90 0.8 16 90 ≤95
1 12.5
1 12
1.6 8.6
SR-VF110 0.8 20 110 R2 1/2
1 18.5
1.3 15.8
16 11.5
SR-VF132 0.8 23 132
1 21.5
13 15
1.6 14
SR-VF160 0.8 28 160 ≤90 DN65
1 22
13 21
1.6 19
SR-VF185 0.8 30 185
1 27
13 22
1.6 21
SR-VF200 0.8 32 200 ≤95 DN80
1 29
13 27
1.6 21
SR-VF220 0.8 38 220
1 30
13 29
16 21
SR-VF250 0.8 43 250
1 39.5
1.3 31
16 28

Adopt a built-in oil separation setting to ensure the oil and gas separation effect and reduce fuel consumption
1.High filtration level and low flow resistance.
2.Good noise reduction and mute effect.
3.Oil and gas separation, high-temperature resistance, high-pressure resistance – reduce the oil content of the exhaust.
4.Clean exhaust to ensure clean gas.
Timely Smart Control Panel
1.Using a user-friendly interface to prompt operation, clear at a glance, real-time monitoring of information.

Company Profile

1.What can you buy from us?
DTH drilling rig,core drilling rig,highway pile driver,solar pile driver ,anchor pile driver,rotary drill rig ,Top Hammer drill rig,underground jumbo drill rig ,DTH hammer,drill rod,screw air compressor,water well drilling rig,truck mounted water well drilling rig,screw air compressor,piston air compressor,pneumatic rock drill ,drill bit,tricone bit ,spare parts.
 

2.How can I make payment?  
A:You can pay by credit card, TT, Western Union, LC etc.  

3.How is the shipment?   How long dose it take?  
A: For large quantity or heavy products, we ship by sea shipping or land shipping.   Shipping efficiency depends on country and city you want to ship to.   For small and delicate products, we ship by DHL, UPS, Fedex or TNT.  You can also appoint shipping method you like before we ship.    

4.How is your quality control?
A: We have our own experienced QC.  There will be strict inspection and testing for every order before shipping out.

 

 

 

After-sales Service: Online Technical Services
Warranty: 1 Year
Lubrication Style: Lubricated

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Hot selling Stationary Inverter Screw Air Compressors 7.5kw 10HP Electric Industrial Compressor Machine   best air compressorChina Hot selling Stationary Inverter Screw Air Compressors 7.5kw 10HP Electric Industrial Compressor Machine   best air compressor
editor by CX 2023-10-26

China Hot selling 200 Litre Dental Portable Electric Silent Oil Free Air Compressor Price wholesaler

Product Description

Advantages and characteristics:

1. Ultra quiet: The sound of the air compressor is low when it works, and it can meet the requirements of indoor use, such as research institutes, laboratories, hospitals, offices, students’ classrooms, families and other environments.

2. Super clean: The machine is pure oil free design, oil free lubrication piston system, high efficiency, small loss, clean
exhaust gas, to meet the needs of supporting equipment, to ensure the safety of operators, more response to the global call of “green environmental protection”.

3. Low energy consumption: the pressure and gas production ratio are set at the CHINAMFG ratio. Under the condition of less energy consumption, more gas source can be produced more quickly.

4. Core technology: Cylinder liner system adopts nano coating technology, abandon inferior oil free material, more quiet, cleaner, longer life, adapt to higher requirements of the field.

5. Drying and sterilizing: according to the needs of different industries can be selected with different precision requirements of the filter, to ensure the use of results as the guidance, to promote user satisfaction.

6. Anti-rust spraying: the interior of the gas storage tank is sprayed to ensure gas cleanliness and product safety at the source.

7. Easy operation: electricity use, automatic design, work without special duty;Air pressure can be adjusted freely in the interval according to the requirements of use, without complicated maintenance, only need regular drainage.

8. Fashion and practical: the appearance design of air compressor is fashionable, the performance is practical, and the operation according to the standard can better extend the working life of the product.

Power:

6400 w

Displacement

1340L/min

Maximum pressure

8bar

Gas storage tank

200L

Noise

55 db

Size

115 * 55 * 81 cm

Net weight

116 kg

After-sales Service: 1 Year
Warranty: 1 Year
Principle: Reciprocating Compressor
Application: Medical
Performance: Low Noise
Mute: Mute
Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China Hot selling 200 Litre Dental Portable Electric Silent Oil Free Air Compressor Price   wholesaler China Hot selling 200 Litre Dental Portable Electric Silent Oil Free Air Compressor Price   wholesaler
editor by CX 2023-10-25