Tag Archives: air compressor industrial

China wholesaler Industrial Energy Saving Electric Variable Frequency Converter Drive 132kw 175HP Inverter Direct Driven Double Screw Type Air Compressor 12v air compressor

Product Description

 

Product Details

 

 Product Features

PM VSD screw air compressor, is a type of screw air compressor that employs permanent magnet synchronous motor (PMSM) and frequency conversion speed control technology.
The main advantages of this screw air compressors are:
Energy saving and high efficiency: Compared with traditional asynchronous motors, permanent magnet inverter motors have higher energy utilization efficiency, and can maintain high power utilization and output power stability under both full load and partial load conditions.

Stable operation: the frequency converter can control a smoother start of the compressor, reduce the impact on the supporting power grid and the mechanical wear and tear of the machine itself, to extend the service life of the equipment.

Low noise: inverter operation can effectively reduce the noise level of the compressor at low load.

Intelligent: Equipped with an intelligent control system, the permanent magnet inverter motor can accurately control the compressor’s working status, distribute the load and achieve more efficient energy use.

Lower maintenance costs: when start-up, frequency conversion air compressor reduces the impact on the power grid and mechanical parts of the equipment, the service life is greatly increased of the compressor’s parts (the motor contactor, motor bearings, host bearings). Energy efficient controller makes the air compressor be in the loading state when at most working time, the relevant solenoid valves and pneumatic components have greatly reduced the number of actions, the failure rate of electrical and mechanical parts is greatly reduced.

Model List

 

Technical Parameters Of PM VSD Screw Air Compressor  -JXPMX Series

This series adopt direct drive mode and variable frequency startup, the standard power supply is 380V/50Hz, and 110V~480V voltage and 60Hz is Optional
 

Model Pressure
(MPa)
Pressure
(psi)
FAD
(m3/min)
FAD
(CFM)
Power
 (kW/hp)
Dimension 
(mm)
Noise
(dB)
Weight
(Kg)
Pipe
Diameter
JX-6APMX 0.8 116 0.68 24 4.5/ 6 800*500*750 ≤58±2 103 G3/4
JX-10APMX 0.8 116 1.1 38.8 7.5/ 10 800*600*860 ≤60±2 120 G1/2
1 145 0.9 31.8
1.3 188 0.7 24.7
JX-15APMX 0.8 116 1.7 60 11/ 15 1050*750*1040 ≤62±2 180 G3/4
1 145 1.6 56.5
1.3 188 1 35.3
JX-20APMX 0.8 116 2.4 84.7 15/ 20 1050*750*1040 ≤65±2 207 G3/4
1 145 2.2 77.7
1.3 188 1.8 63.6
JX-30APMX 0.8 116 3.5 123.6 22/ 30 1160*800*1180 ≤65±2 280 G1
1 145 3 105.9
1.3 188 2.5 88.3
JX-40APMX 0.8 116 5.2 183.6 30/ 40 1250*950*1270 ≤65±2 360 G1
1 145 4.3 151.8
1.3 188 3.2 113
JX-50APMX 0.8 116 6.1 215.4 37/ 50 1250*950*1270 ≤66±2 438 G1 1/2
1 145 5.3 187.1
1.3 188 4.6 162.4
JX-60APMX 0.8 116 7.4 261.3 45/ 60 1250*1000*1370 ≤68±2 486 G1 1/2
1 145 6.8 240.1
1.3 188 5.7 201.3
JX-75APMX 0.8 116 9.5 335.4 55/ 75 1600*1140*1530 ≤70±2 998 G2
1 145 8.2 289.5
1.3 188 6.8 240.1
JX-100APMX 0.8 116 12.2 430.8 75/ 100 1750*1240*1600 ≤70±2 1096 G2
1 145 10.9 384.9
1.3 188 9.1 321.3
JX-125APMX 0.8 116 15.3 540.2 90/ 125 2350*1450*1830 ≤82±2 1320 G2
1 145 13.4 473.2
1.3 188 11.6 409.6
JX-150APMX 0.8 116 19.8 699.1 110/ 150 2550*1680*1900 ≤82±2 2680 DN80
1 145 16.4 579.1
1.3 188 14.5 512.0
JX-175APMX 0.8 116 23 812.1 132/ 175 2550*1680*1900 ≤82±2 2900 DN80
1 145 19.5 688.5
1.3 188 16.2 572.0
JX-200APMX 0.8 116 27.2 960.4 160/ 200 3050*1900*2000 ≤84±2 4150 DN80
1 145 22.6 798.0
1.3 188 21.2 748.6
JX-250APMX 0.8 116 30 1059.3 185/ 250 3050*1900*2000 ≤84±2 4320 DN80
1 145 27.2 960.4
1.3 188 23.3 822.7
JX-270APMX 0.8 116 33 1165.2 200/ 270 3620*2200*2250 ≤86±2 5350 DN100
1 145 29 1571.0
1.3 188 25.4 896.9
JX-300APMX 0.8 116 38 1341.8 220/ 300 3620*2200*2250 ≤86±2 5600 DN100
1 145 32 1129.9
1.3 188 28.6 1009.9
JX-340APMX 0.8 116 43 1518.3 250/ 340 3620*2200*2250 ≤86±2 5960 DN100
1 145 37.5 1324.1
1.3 188 31.2 1101.7

Presentation of all aspects

 

In our product showcase, the air compressor stands as a testament to our commitment to precision work for better quality. Every component, from the robust motor to the intricate valves, is crafted with meticulous attention to detail in our specialized workshops.
Our air compressor production begins with precision cutting and shaping of sheet metal, ensuring a CHINAMFG foundation. Components are assembled with meticulous care, from welding to the installation of noise-reducing mufflers, and coated for protection. Rigorous testing and careful packaging guarantee quality and safe delivery, reflecting our commitment to CHINAMFG in every compressor we craft.

Our air compressor production begins with precision cutting and shaping of sheet metal, ensuring a CHINAMFG foundation. Components are assembled with meticulous care, from welding to the installation of noise-reducing mufflers, and coated for protection. Rigorous testing and careful packaging guarantee quality and safe delivery, reflecting our commitment to CHINAMFG in every compressor we craft.

Our factory integrates advanced machinery to craft top-quality air compressors. Laser cutting and bending machines create precise metal components, while welding builds a durable structure. Test equipment ensures performance and safety, spray booths protect and enhance aesthetics, and efficient forklift handling streamlines production, delivering reliable products to our customers.

Customer testimonials overwhelmingly reflect high satisfaction with our air compressor products and service. Clients are consistently impressed by the durability and performance of our air compressors, noting their superior quality and suitability for various industrial needs. Ease of installation, impressive power output, and the smooth operation of our machines are frequently highlighted as key attributes.

Air compressors play a key role in many scenarios. In laboratory gas supply, they ensure precise and stable air pressure; in automotive spraying and metal stamping, they provide efficient power to improve production efficiency. In wood processing and rock drilling, air compressors drive tools to realize precise operation; in plastic production lines, stable airflow helps molding to ensure product quality. These application scenarios fully demonstrate the indispensability of air compressors in modern industrial production.

At exhibitions and customer visits, we carefully demonstrate the outstanding performance and innovative technology of our air compressors, allowing visitors to experience the advantages of their use in a wide range of industrial applications. From laboratory gas supply to automotive spraying, from metal stamping to wood processing to plastics production, the power and flexibility of air compressors were demonstrated in all aspects. Through on-site demonstrations and interactive exchanges, we not only enhanced our customers’ understanding of the product performance, but also collected valuable feedback

  /* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

air compressorsair compressors
editor by lmc 2025-02-25

China manufacturer China Medium High Pressure Silent Screw Air Compressor 15kw 55kw 75kw 110kw for Industrial Blow Molding Machine 30bar 40bar 4.0MPa Energy-Saving Low Price Sale small air compressor

Product Description

Product Description

China High Pressure 15kw 37kw 45kw 55kw 90kw 110kw 132kw 160kw Air cooling Industrial Screw air Compressor 16bar 25bar 30bar 40bar 1.6~4.0Mpa  3~30m³/min low noise Energy-Saving Compressors with High Quality and Lower Price

Screw air compressor are used widely in Power Gernartion, Oil&Gas,Carbon Fibre industried,emergenc deisel engine starting, compressored air filling station,burst testing,hydraulic pressurizes chamber and fast growing pet blowing moulding for food and beveragempharmaceutical, and others modern industries applications.

Features: 

1.High efficiency, high power factor of permanent magnet synchronous motor : cancel the rotor excitation system loss, improves the efficiency of 2-3%
2.Wide speed range: the frequency range of the motor can achieve 25% – 100%, and asynchronous frequency can only achieve 50% -100%, and permanent magnet motor driving the compressor to realize the no-load operation of lower velocity, no-load energy-saving.
3.Low noise: Reas onable slot, magnetic field design,work more widely, lower operating noise.
4.Compact in structure, small in size and light in weight: Permanent magnet rotor small size, high power (torque) density.
5.Large starting torque: Maximum starting torque and rated torque ratio of up to 3 times more than the general induction motor is only 1.6 times.
6.Constant supply pressure:To achieve rapid press ure control control

Two-stage Compression Medium Pressure CHINAMFG System Flow Chart

If these are not what you need, you can give us the exhaust pressure, displacement, usage and some other requirements of the air compressor, We will custom for you.

   

Our Advantages

Our air compressor

Other air compressor

duplex bearings in the crankcase;extending the working life and boosting the power

single bearing;unstable operation

aluminous alloy piston;resisting high temperature and working well.

General aluminous piston;resisting high temperature but working badly

Sweden steel valve plate and spring plate; keeping operating without flexibility

Domestic steel valve plate;easy to be out of shape

automatic unload system;extending the working life and making sure the system starts safely

Start with load in the air compressor;easy to burn the motor

the king of the world Herbiger air valve

domestic valve

combinational loop for automobile can better
scrape the oil and extend the working life

Average carbonated ring,working unreliably and shortening life

Automatic unload system,releasing the pressure from inter-cooler and cylinders to make sure the machine start without residual pressure

Some hi-tech manufactories adopt this technique, but not all.

cooling automatic drain equipment;successfully releasing the water in the high pressured tubes

No automatic drain equipment;failing to release the residual water

Danvers,Schneider parts;reliable quality

Domestic parts;unreliable quality

 

Packaging & Shipping

Packaging Details: Wooden case package
Delivery Detail: 15 working days

 

Company Profile

ZheJiang CHINAMFG Union Machinery is a professional manufacturer of plastic machines. It occupied an area of 18000 square meters. With years of development, its products covers plastic extrusion lines, plastic blowing machine, plastic recycling machine, air compressor etc. 

Stick to the company idea is making good machine, being good person, CHINAMFG alwasy provide customers with high quality machines. Warmly welcome to visit our factory (next to ZheJiang )!

Why choose us?

Our advantages

1.20+ years plastic machine factory and we have 20000 square CHINAMFG standard workshop
2.15+ years experience engineer for the plastic machine, They can provide you with customized services
3.15+ years experience After-sales team, They have debugged and repaired 100+ production lines.
4.18 hours online sales staff, They can answer your questions within 6 hours

FAQ

Q: Your company is a transactional company or an industrial manufacture factory?
A: We are an industrial manufacture factory which locates in HangZhou city.

Q: All of your products are made by your self or compacted via purchasing the others?
A: We have independent technical team who focus on making machines, all the products are made by our technical team.

Q: What is the ability of your factory?
A: About 100 lines per month.

Q: Do you have any other services about your products?
A: We have a lot of experience on making projects and specifications for our clients, also we have a fixed service system.

Q: How do you make the quotation for clients? 
A: The price depends on quality and performance but the clients should be satisfied first.

/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

air compressorsair compressors
editor by lmc 2025-02-24

China Standard Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO Certificate 12v air compressor

Product Description

Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO and CE Certificate

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Angular
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Water-Lubricated Air Compressors Impact Compressed Air Quality?

Water-lubricated air compressors can have an impact on the quality of the compressed air they produce. Here’s a detailed explanation of how water-lubricated air compressors can affect compressed air quality:

Moisture Content:

  • Condensation: Water-lubricated compressors introduce moisture into the compressed air system. During the compression process, as the air cools downstream, moisture can condense and accumulate. This moisture can lead to issues such as corrosion, rust, and contamination of downstream equipment or processes.
  • Water Carryover: If the compressor’s water separation mechanisms are not efficient or if there are malfunctions in the water removal systems, water droplets or mist may carry over into the compressed air. This can negatively impact the quality of the compressed air and introduce moisture-related issues downstream.

Contamination:

  • Oil Contamination: In some water-lubricated compressors, there is a potential for oil to mix with the water used for lubrication. If oil and water emulsify or if there are leaks in the compressor system, oil contamination may occur. Oil-contaminated compressed air can have adverse effects on downstream processes, equipment, and products. It can lead to contamination, reduced performance of pneumatic components, and potential health and safety concerns.
  • Particulate Contamination: Water-lubricated compressors can introduce particulate matter, such as sediment, debris, or rust, into the compressed air system. This can occur if the water supply or water treatment systems are not adequately filtered or maintained. Particulate contamination can clog or damage pneumatic equipment, affect product quality, and cause operational issues in downstream applications.

Preventive Measures:

  • Water Separation: Water-lubricated compressors employ various water separation mechanisms to remove moisture from the compressed air. This includes moisture separators, water traps, or coalescing filters that are specifically designed to capture and remove water droplets or mist from the compressed air stream. Regular maintenance and inspection of these separation systems are necessary to ensure their proper functioning.
  • Air Treatment: Additional air treatment components, such as air dryers or desiccant systems, can be installed downstream of water-lubricated compressors to further reduce moisture content in the compressed air. These systems help to remove moisture that may have carried over from the compressor and ensure that the compressed air meets the required dryness standards for specific applications.
  • Proper Maintenance: Regular maintenance of water-lubricated compressors is essential to minimize the potential impact on compressed air quality. This includes routine inspection, cleaning, and replacement of filters, lubrication systems, and water separation components. Addressing any leaks, malfunctioning components, or system issues promptly can help maintain the integrity of the compressed air and prevent contamination or excessive moisture levels.

By implementing appropriate water separation mechanisms, air treatment systems, and maintenance practices, the impact of water-lubricated air compressors on compressed air quality can be minimized. It is important to consider the specific requirements of the application and follow industry standards and guidelines to ensure the desired compressed air quality is achieved.

air compressor

Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?

When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:

Water Quality:

  • Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
  • Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.

Water Temperature:

  • Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
  • Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.

Water Treatment:

  • Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
  • Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.

Manufacturer Recommendations:

  • Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.

By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.

air compressor

Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?

Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:

  1. Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
  2. Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
  3. Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
  4. Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
  5. Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
  6. Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.

Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.

China Standard Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO Certificate   12v air compressorChina Standard Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO Certificate   12v air compressor
editor by CX 2024-02-25

China Hot selling Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO Certificate air compressor price

Product Description

Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO and CE Certificate

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Angular
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Are the Safety Considerations When Using Water-Lubricated Compressors?

When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:

  1. Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
  2. Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
  3. Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
  4. Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
  5. Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
  6. Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.

It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.

air compressor

How Do Water-Lubricated Air Compressors Compare in Terms of Maintenance Costs?

When comparing water-lubricated air compressors to other types of compressors, there are several factors that can influence the maintenance costs. Here’s a detailed explanation of how water-lubricated air compressors compare in terms of maintenance costs:

Initial Investment:

  • Higher Initial Cost: Water-lubricated air compressors tend to have a higher initial cost compared to oil-lubricated compressors. This is primarily due to the additional components required for the water-lubrication system, such as water pumps, filters, and separators. The higher initial investment can impact the overall cost of the compressor system.

Lubrication System Maintenance:

  • Water Treatment and Filtration: Water-lubricated compressors may require additional maintenance for water treatment and filtration systems. Regular monitoring, maintenance, and replacement of filters or treatment media are necessary to ensure the water quality remains suitable for lubrication. The cost of water treatment and filtration maintenance should be considered in the overall maintenance costs.
  • Water Quality Monitoring: Monitoring the quality of the water used in water-lubricated compressors is crucial. This may involve periodic water analysis, temperature monitoring, and water chemistry checks. The cost of water quality monitoring should be factored into the maintenance costs.

Component Lifespan and Replacement:

  • Extended Component Lifespan: Proper water-lubrication and cooling can contribute to the extended lifespan of compressor components. Reduced friction, effective cooling, and contaminant control can minimize wear and damage to components, leading to lower replacement costs over time. Water-lubricated compressors may have advantages in terms of component longevity, potentially reducing the frequency of component replacements.

Corrosion Prevention:

  • Corrosion Protection Measures: Water-lubricated compressors require corrosion prevention measures due to the presence of water within the system. Corrosion-resistant materials, coatings, or regular maintenance procedures are necessary to prevent corrosion-related issues. The cost of implementing and maintaining corrosion protection measures should be considered in the overall maintenance costs.

Overall, the maintenance costs of water-lubricated air compressors can vary depending on factors such as the specific design and components of the compressor, the quality of the water used, the effectiveness of water treatment and filtration systems, and the implementation of corrosion prevention measures. While water-lubricated compressors may have higher initial costs and additional maintenance requirements, they can potentially offer advantages in terms of extended component lifespan, reduced component replacements, and effective lubrication. It is important to consider these factors and consult the manufacturer’s guidelines to accurately assess the maintenance costs associated with water-lubricated air compressors.

air compressor

Advantages of Using Water as a Lubricant in Air Compressors

Water can be used as a lubricant in air compressors, offering several advantages over traditional lubricants such as oils or synthetic lubricants. Here are some of the advantages:

  1. Cost-effective: Water is a readily available and inexpensive resource, making it a cost-effective lubricant option for air compressors. Compared to oils or synthetic lubricants, water is significantly cheaper, which can result in cost savings for businesses and industries that heavily rely on air compressors.
  2. Environmentally friendly: Water is a non-toxic and environmentally friendly lubricant. It does not contain harmful chemicals or pollutants that can contribute to air or water pollution. Using water as a lubricant in air compressors reduces the risk of contamination and minimizes the environmental impact associated with traditional lubricants.
  3. Improved heat dissipation: Water has excellent heat transfer properties. It can absorb and dissipate heat more efficiently compared to oils or synthetic lubricants. Air compressors generate heat during operation, and using water as a lubricant helps to dissipate this heat effectively, preventing overheating and prolonging the lifespan of the compressor.
  4. Reduced fire hazard: Compared to oils or synthetic lubricants, water has a significantly higher flash point, which means it is less likely to ignite or contribute to fire hazards. This fire-resistant property of water makes it a safer lubricant choice, especially in environments where fire safety is a concern.
  5. Lower maintenance requirements: Water does not leave behind sticky residues or deposits, as some oils or synthetic lubricants might. This characteristic reduces the maintenance requirements of air compressors. It simplifies the cleaning process and reduces the frequency of lubricant changes, resulting in reduced downtime and maintenance costs.

Overall, using water as a lubricant in air compressors can offer significant advantages in terms of cost-effectiveness, environmental friendliness, heat dissipation, fire safety, and maintenance requirements.

China Hot selling Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO Certificate   air compressor priceChina Hot selling Air Compressor Industrial Electric Screw Type Silent Oil Free with ISO Certificate   air compressor price
editor by CX 2024-02-24

China supplier CHINAMFG 1 Year Standard Packing 4200*1950*2100 Zhengzhou City, China Industrial Air Compressor air compressor oil

Product Description

Product Description

Product Features

1. The enlarged plastic air filter is designed to be used for more than 5000 hours with the filter element accuracy of 3 microns. Dry, heavy duty, long life design, easy to clean and replace.

2. SAE standard stainless steel pipe design, low resistance, strong corrosion resistance, superior performance, completely eliminate oil leakage, air leakage, and water leakage problems.

3. Adopting the most advanced host machine in China, adhering to the exquisite manufacturing technology of Germany, adopting the low-pressure and high-efficiency tooth shape with the highest efficiency, the optimized runner design, the big rotor, low speed, high efficiency and high reliability provide your air compressor with a powerful heart, thus achieving efficiency and energy-saving synchronization.

4. The enlarged horizontal structure cooler not only improves the cooler performance, but also facilitates the maintenance, thoroughly solving the unit high temperature problem

5. Increased oil and gas storage tank to ensure the safe and reliable operation.

6. Oversized fuel tank ensures all-day operation of diesel.

7. Oversized fuel filters ensure the cleanliness of diesel entering the engine. Extend the service life of diesel engine.

8. Super large, super strong walking system, strong bearing, and mobile flexibility.

Model

 

HF19/18(J)

HF20/18(J)

Compressor

Type

 

Screw two-stage compression air compressor

Screw two-stage compression air compressor

Gas displacement

m3/min

19

20

Discharge pressure

bar

18

18

Drive mode

 

Direct coupling, diesel engine driven

Direct coupling, diesel engine driven

Oil and gas tank volume

L

150

150

Lubricating oil capacity

L

90

90

Diesel engine

Brand

 

 

 

Model

 

6CTA8.3

6CTA8.3

Type

 

Liquid cooled, 4 stroke, direct injection

Liquid cooled, 4 stroke, direct injection

Air cylinder QTY

 

6

6

Rated power

kw

194

194

Rated rotation speed

rpm

1900

2200

Lubricating oil capacity

L

24

24

Cooling water consumption

L

70

70

Fuel tank volume

L

380

380

Dimension & weight

Length

mm

4200

4200

Width

mm

1950

1980

Height

mm

2100

2100

Net weight

kg

4000

4000

Outlet exhaust valve

 

1*G2″, 1*G1″

1*G2″, 1*G1″

Optional for preheater

Company Profile

FAQ

1. Are you a trading company or a manufacturer?
We are a professional manufacturer. Our factory mainly produces water well drilling rigs, core drilling rigs, down-the-hole drilling rigs, pile drivers, etc. The products have been exported to hundreds of countries around the world and enjoy a high reputation all over the world.

2. How is the quality of your machine?
Our products pass strict quality inspections before they leave the factory to ensure that they are qualified before they are shipped.

3. How to inspect the goods?
1) Support customers to come to the factory for on-site inspection.
2) Support customers to designate third-party companies to inspect goods.
3) Support video inspection.

4. Do you have after-sales service?
Yes, we have a dedicated service team that will provide you with professional technical guidance. If you need, we can send our engineers to your workplace and provide training for your employees.

5. How about quality assurance?
We provide a one-year quality guarantee for the main machine of the machine.

6. How long is your delivery cycle?
1) In the case of stock, we can deliver the machine within 7 days.
2) Under standard production, we can deliver the machine within 15-20 days.
3) In the case of customization, we can deliver the machine within 20-25 days.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support,Field Maintenance
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Structure Type: Open Type
Samples:
US$ 26000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China supplier CHINAMFG 1 Year Standard Packing 4200*1950*2100 Zhengzhou City, China Industrial Air Compressor   air compressor oilChina supplier CHINAMFG 1 Year Standard Packing 4200*1950*2100 Zhengzhou City, China Industrial Air Compressor   air compressor oil
editor by CX 2024-02-22

China factory High Quality Oil Free Oxygen Booster Gas Compressor Industrial Boost Air Compressor best air compressor

Product Description

HangZhou CHINAMFG Gas Equipment Co.,Ltd, exporting diaphragm compressor, piston compressor, oxygen generator, gas cylinder and nitrogen generators with good quality and low price.

Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provide After-Sales Service
Warranty: 18months
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Customization:
Available

|

air compressor

What Are the Key Components of a Water-Lubrication System in Compressors?

A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:

Water Supply:

  • Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
  • Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.

Lubrication System:

  • Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
  • Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
  • Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
  • Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
  • Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.

Control and Monitoring:

  • Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
  • Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
  • Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.

Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.

air compressor

How Are Water-Lubricated Air Compressors Used in Automotive Applications?

Water-lubricated air compressors find various applications in the automotive industry. Here’s a detailed explanation of how they are used in automotive applications:

Tire Inflation:

  • Service Stations: Water-lubricated air compressors are commonly used in automotive service stations for tire inflation. They provide a reliable source of compressed air for quickly and efficiently inflating tires to the recommended pressure. The water lubrication system in these compressors helps to reduce friction and wear on internal components, ensuring smooth operation and extended lifespan.
  • Tire Shops: Tire shops often utilize water-lubricated air compressors as part of their tire service equipment. These compressors can supply compressed air for tire inflation, tire mounting and demounting machines, and other pneumatic tools used in tire service and maintenance.

Painting and Finishing:

  • Spray Painting: Water-lubricated air compressors are also used in automotive painting and finishing processes. Compressed air is used to power spray guns that apply paint or coatings to vehicles during the painting process. The water lubrication system helps maintain the cleanliness of the compressor and prevents oil contamination, ensuring high-quality paint finishes.
  • Sanding and Polishing: Compressed air is often used for sanding and polishing automotive surfaces. Water-lubricated air compressors provide a reliable source of compressed air for pneumatic sanders, polishers, and other air-powered tools used in automotive surface preparation and refinishing.

Brake and Suspension Systems:

  • Brake Bleeding: Water-lubricated air compressors can be used during brake bleeding procedures in automotive repair and maintenance. Compressed air is used to purge air bubbles from the brake system, ensuring optimal brake performance and pedal feel. The water lubrication system helps maintain the purity of the compressed air, preventing contamination that could affect the brake system’s functionality.
  • Suspension Systems: Air suspension systems in vehicles often rely on compressed air for operation. Water-lubricated air compressors provide a continuous supply of clean and lubricated compressed air for inflating and maintaining the air springs or airbags used in vehicle suspensions.

Diagnostic and Testing Equipment:

  • Diagnostic Tools: Water-lubricated air compressors are utilized in automotive diagnostic and testing equipment. Compressed air is used to operate pneumatic diagnostic tools, such as vacuum testers, pressure gauges, and leak detectors, that help diagnose and troubleshoot various vehicle systems.
  • Testing and Calibration: Automotive testing and calibration equipment, such as dynamometers and emission testing devices, often require a source of compressed air. Water-lubricated air compressors supply the necessary compressed air for precise and accurate testing of vehicle performance, emissions, and other parameters.

Overall, water-lubricated air compressors play a significant role in various automotive applications, including tire inflation, painting and finishing, brake and suspension systems, and diagnostic and testing equipment. Their use helps ensure efficient and reliable operation, improved productivity, and high-quality results in automotive service, repair, and manufacturing processes.

air compressor

Can Water-Lubricated Air Compressors Be Used in Medical Applications?

Water-lubricated air compressors can be used in certain medical applications, offering specific advantages for these environments. Here are some considerations regarding the use of water-lubricated air compressors in medical settings:

  1. Clean and sterile lubrication: Water is a clean and sterile lubricant, making it suitable for medical applications where maintaining a sterile environment is crucial. Water lubrication helps prevent contamination and ensures the integrity of medical products and procedures.
  2. Reduced risk of oil contamination: Oil-lubricated compressors pose a risk of oil carryover and oil vapor entering the compressed air system. This can be problematic in medical applications, where oil contamination could impact patient safety or interfere with sensitive medical equipment. Water-lubricated compressors eliminate this risk, providing a reliable and oil-free compressed air source.
  3. Compatibility with medical gases: Water-lubricated air compressors are compatible with medical gases such as oxygen or nitrous oxide. Unlike oil lubricants, water does not react or contaminate these gases, ensuring their purity and safety in medical procedures.
  4. Hygienic and easy to clean: Water lubrication simplifies cleaning procedures in medical environments. It does not leave behind sticky residues or require harsh chemicals for cleaning. Water-lubricated compressors can be easily cleaned and maintained, promoting a hygienic and safe medical facility.
  5. Reduced risk of fire hazards: Water has a higher flash point compared to oil lubricants, making water-lubricated compressors safer in terms of fire hazards. In medical settings, where fire safety is critical, using water as a lubricant can provide added peace of mind.
  6. Environmental friendliness: Water is a non-toxic and environmentally friendly lubricant choice. It does not contribute to air or water pollution, aligning with the sustainability goals of medical facilities.

While water-lubricated air compressors offer several advantages for medical applications, it’s important to note that specific requirements and regulations may vary depending on the type of medical procedure or equipment involved. It is advisable to consult with medical professionals or equipment manufacturers to ensure the suitability and compliance of water-lubricated air compressors for specific medical applications.

China factory High Quality Oil Free Oxygen Booster Gas Compressor Industrial Boost Air Compressor   best air compressorChina factory High Quality Oil Free Oxygen Booster Gas Compressor Industrial Boost Air Compressor   best air compressor
editor by CX 2024-02-21

China Professional 220V 1.5kw Industrial Compressors Two Pole Silent Motor Medical Oil Free Air Compressor arb air compressor

Product Description

220V 1.5Kw Industrial Compressors Two Pole Silent Motor Medical Oil Free Air Compressor

Product Parameters

Name Two Pole Air Compressor
Applicable Industries Manufacturing Plant, Food & Beverage Factory, Printing Shops, Construction works , Food & Beverage Shops, Advertising Company
Showroom Location None
Machinery Test Report Provided
Video outgoing-inspection Provided
Marketing Type Other
Core Components Pressure vessel, Engine, Motor, Pump, Bearing
Gas Type     Air
Configuration PORTABLE
Power Source     AC POWER
Type PISTON
Lubrication Style Oil-free
Mute Yes
Voltage 220V
Application Medical dental, bus, airbrush spray paint,industrial
OEM Welcomed
Certification CE, ISO9001

 

Model name

Delivery rate at 0 bar

Max. pressure

Nominal pressure

Noise level at nomal pressure

Motor input

Voltage

Frequency

XLOF1400-25L

190L/min

8 bar 116psi

6 bar 87 CHINAMFG

75 db(A)

1.5 KW

220 V

50 Hz

Product Display

 

Company Profile

Founded in 2002, ZHangZhoug CHINAMFG Electromechanical Co., Ltd. focus on manufacturing air compressors for more than 15 years. Our company is located in Daxi Pump Industrial Area, HangZhou City, ZHangZhoug, China. having more than 15000 square meter working area.We specialize in all kinds of piston air compressors, especially having advantages in our new advanced heavy-duty oil-free air compressors.

FAQ

Q1: Are you a factory or a trading company?
A: A: Manufacturer and we focus on the development and production of air compressors for more than 20 years.

Q2: Is OEM service available?
A: Of course. We have many years experience of OEM service.

Q3: Can I get a sample to check the quality?
A: We are glad to offer you samples for test. Leave us message of the item you want or your requirements. We will reply you within 24 hours in working time.

Q4: I am buying from another supplier, but need better service, would you match or beat the price I am paying?
A: We always feel we provide the best service and competitive prices. We would be more than happy to personalize a competitive quote for you, just email us.

Q5: Is customized service available?
A: Of course, OEM & ODM both are available. Please contact us for details.

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Parallel Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What Industries Commonly Use Water-Lubricated Air Compressors?

Water-lubricated air compressors find applications in various industries where specific operating conditions or regulatory requirements make them a preferred choice. Here are some industries that commonly utilize water-lubricated air compressors:

  • Food and Beverage: Water-lubricated compressors are often used in the food and beverage industry due to their ability to provide clean, oil-free compressed air. Compressed air is widely used in food processing and packaging applications, such as pneumatic conveying, product mixing, bottle blowing, and food packaging. Water-lubricated compressors help maintain product purity, prevent oil contamination, and comply with stringent food safety standards.
  • Pharmaceutical and Healthcare: The pharmaceutical and healthcare industries have strict requirements for compressed air quality, especially in applications where compressed air comes into direct contact with pharmaceutical products or is used in critical medical equipment. Water-lubricated compressors offer a viable solution by providing lubrication without the risk of oil contamination. They are commonly used for processes such as air agitation, medical device manufacturing, and laboratory applications.
  • Electronics and Semiconductors: In electronics and semiconductor manufacturing, where sensitive components and cleanroom environments are involved, oil-free compressed air is essential. Water-lubricated compressors can provide the required level of air purity without introducing oil particles or vapors that could contaminate the electronics or semiconductor production processes. They are used in applications such as chip manufacturing, circuit board assembly, and cleanroom air supply.
  • Textile and Garment: Water-lubricated compressors are utilized in the textile and garment industry, where the presence of oil can negatively impact the quality and appearance of fabrics or garments. Compressed air is widely used in textile machinery for tasks such as spinning, weaving, and air jet looms. Water-lubricated compressors ensure oil-free air supply, preventing oil stains or contamination that could affect the final textile or garment products.
  • Environmental and Wastewater Treatment: Water-lubricated compressors are also employed in environmental and wastewater treatment applications. These compressors help supply air for aeration processes in wastewater treatment plants, where air is introduced into the treatment tanks to facilitate the growth of beneficial bacteria for biological treatment. Water-lubricated compressors provide oil-free compressed air, ensuring the purity and effectiveness of the treatment process.

While the industries mentioned above commonly use water-lubricated air compressors, it is important to note that these compressors may also find applications in other sectors where oil-free, contamination-free compressed air is required for specific processes or environmental considerations.

air compressor

How Do Water-Lubricated Air Compressors Compare in Terms of Maintenance Costs?

When comparing water-lubricated air compressors to other types of compressors, there are several factors that can influence the maintenance costs. Here’s a detailed explanation of how water-lubricated air compressors compare in terms of maintenance costs:

Initial Investment:

  • Higher Initial Cost: Water-lubricated air compressors tend to have a higher initial cost compared to oil-lubricated compressors. This is primarily due to the additional components required for the water-lubrication system, such as water pumps, filters, and separators. The higher initial investment can impact the overall cost of the compressor system.

Lubrication System Maintenance:

  • Water Treatment and Filtration: Water-lubricated compressors may require additional maintenance for water treatment and filtration systems. Regular monitoring, maintenance, and replacement of filters or treatment media are necessary to ensure the water quality remains suitable for lubrication. The cost of water treatment and filtration maintenance should be considered in the overall maintenance costs.
  • Water Quality Monitoring: Monitoring the quality of the water used in water-lubricated compressors is crucial. This may involve periodic water analysis, temperature monitoring, and water chemistry checks. The cost of water quality monitoring should be factored into the maintenance costs.

Component Lifespan and Replacement:

  • Extended Component Lifespan: Proper water-lubrication and cooling can contribute to the extended lifespan of compressor components. Reduced friction, effective cooling, and contaminant control can minimize wear and damage to components, leading to lower replacement costs over time. Water-lubricated compressors may have advantages in terms of component longevity, potentially reducing the frequency of component replacements.

Corrosion Prevention:

  • Corrosion Protection Measures: Water-lubricated compressors require corrosion prevention measures due to the presence of water within the system. Corrosion-resistant materials, coatings, or regular maintenance procedures are necessary to prevent corrosion-related issues. The cost of implementing and maintaining corrosion protection measures should be considered in the overall maintenance costs.

Overall, the maintenance costs of water-lubricated air compressors can vary depending on factors such as the specific design and components of the compressor, the quality of the water used, the effectiveness of water treatment and filtration systems, and the implementation of corrosion prevention measures. While water-lubricated compressors may have higher initial costs and additional maintenance requirements, they can potentially offer advantages in terms of extended component lifespan, reduced component replacements, and effective lubrication. It is important to consider these factors and consult the manufacturer’s guidelines to accurately assess the maintenance costs associated with water-lubricated air compressors.

air compressor

What is a water lubrication air compressor?

A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:

Working Principle:

In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.

Advantages:

1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.

2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.

3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.

4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.

Applications:

Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:

  • Food and beverage processing
  • Pharmaceutical manufacturing
  • Electronics manufacturing
  • Spray painting and coating
  • Laboratories and research facilities
  • Dental offices

These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.

China Professional 220V 1.5kw Industrial Compressors Two Pole Silent Motor Medical Oil Free Air Compressor   arb air compressorChina Professional 220V 1.5kw Industrial Compressors Two Pole Silent Motor Medical Oil Free Air Compressor   arb air compressor
editor by CX 2024-02-19

China supplier Hf15/13 (H) Industrial Permanent Magnet Stationary Screw Air Compressor with Great quality

Product Description

Product Description    

Application

Hanfa group through the continuous pursuit of technological innovation, to meet the needs of market development, in the original mobile screw air compressor series is developed on the basis of smaller size, the layout more reasonable, more cost-effective new mobile screw series. Comprehensive performance is good, the more efficient is widely used in drilling, pipeline pressure test and related fields.For cold area can also be optional liquid fuel oil heater, through the pulmonary circulation cooling heating cylinder diesel engine, thus allowing you to start.

Features

1.High reliability

All the main parts and components are made by CHINAMFG enterprises at home and abroad with reliable quality. Pressure, force constant, flow stable; Realize the displacement from 0 to 100% T continued from section II, high efficiency, energy saving, stable and reliable;

2.Convenience

Small volume, light weight, low noise;Compact, easy to transport, covers an area of less, also can enter in narrow condition, out freely, reduce transportation costs.All the door design, ensure the wide operation space, convenient maintenance and repair. To save time, improve efficiency.

3.To adapt to the environment

This air compressor to ensure that the cold temperature, oxygen condition can also be a perfect start, satisfy the bearing and all kinds of bad working condition of using the environment. For customers to solve the has the worry, greatly improve the work efficiency.

4.Comprehensive monitoring

Equipment running state can be comprehensive monitoring;Control panel, in both Chinese and English interface is concise, clear, equipment running status be clear at a glance, the operation is convenient, and equipped with automatic stop function with regard to the guarantee the safety of person, machine.
Technical Data 

name

HF12/13(H)

HF15/13(H)

compressor

Displacement

12(m/min)

15(m/min)

Exhaust pressure

13(bar)

13(bar)

Compression level

Single-stage

Single-stage

Gas tank volume

120(bar)

130(bar)

Screw oil quantity

60(l)

65(l)

 

 

diesel engine

Engine manufacturer

 

 

engine model

6BTA5.9-C180

6BTA5.9-C180

Number of cylinders

6

6

rated power

132(kw)

132(kw)

Rated speed

2200(rpm)

2200(rpm)

Idling speed

1400(rpm)

1400(rpm)

Diesel engine lubricants

18(l)

18(l)

Coolant volume

40(l)

40(l)

Fuel tank volume

335(l)

335(l)

 

 

unit

Battery

6-QW-135MF*2

6-QW-135MF*2

Connection size

1-G2″,1-G1″,

1-G2″,1-G1″,

transfer method

Coupling direct coupling

Coupling direct coupling

long

4200(mm)

4200(mm)

width

1980(mm)

1980(mm)

high

2210(mm)

2210(mm)

Total Weight

2700(kg)

2700(kg)

Unit walking mode

Two rounds of movement

Two rounds of movement

Working Site
Company Introduction
CHINAMFG Group established in 1998 is a key enterprise in the industry of geological exploration and water well field, with the ability to research,manufacture and market. Now, the Group pursues high standard manufacturing and qualified products. It has more than 20 species such as water well drilling rig, core drilling rig, engineering drilling rig, DTH drilling rig, horizontaldirectional drilling rig, etc. These machines are mainly used in geological prospecting, exploration of railway and highway engineering, mining, SPT, water well, geothermal well etc. Some of them won the Scientific and Technical Advance Prize or the National Scientific Research Achievement Prize. All the products have passed the quality system certification of ISO9001:2000 and are national inspection-free products.

1. More than 30 years of experience 

The factory is located in ZheJiang Province, China. We are very welcome to visit our factory. If
you need it, we will arrange a pick-up.
2.Top production team 
The transportation and packaging will be packaged in international standards. If you have special packaging requirements, we will give you the most suitable solution.
3.Our Service 
– New machine provides technical trair.
– Once anything goes wrong with the machine by normal using, our technical person must appear at the first time no matter where you are.
– When the machine should be maintained, you will receive the reminding from us.
– According to different geological conditions, we will recommend different construction plans for you
– Remind you which are wearing parts, so you can prepare enough.
– 24 hours respond to your quality problem.

FAQ
1,Are you trading company or manufacturer?

We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.

2,Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.

3,How about your machine quality? 
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.

4,Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.

5,What about the qaulity warranty? 
We offer one-year quality warranty for machines’ main body.

6,How long can you deliver the machine? 
Generally, we can deliver the machine in 7 days.

Our Customers

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Open Type
Installation Type: Movable Type
Samples:
US$ 20000/Set
1 Set(Min.Order)

|
Request Sample

air compressor

What Are the Safety Considerations When Using Water-Lubricated Compressors?

When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:

  1. Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
  2. Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
  3. Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
  4. Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
  5. Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
  6. Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.

It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.

air compressor

How Do You Troubleshoot Common Problems with Water-Lubrication Systems?

When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:

Step 1: Identify the Problem:

The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.

Step 2: Check Water Supply:

Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.

Step 3: Inspect Water Filters and Strainers:

Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.

Step 4: Verify Water Pressure:

Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.

Step 5: Examine Water-Lubrication Components:

Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.

Step 6: Check for Air in the System:

Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.

Step 7: Inspect Cooling Mechanisms:

Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.

Step 8: Consult Manufacturer Documentation:

If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.

Step 9: Seek Professional Assistance:

If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.

By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.

air compressor

How does a water lubrication system work in air compressors?

A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:

1. Water Injection:

In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.

2. Lubrication:

As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.

3. Cooling:

The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.

4. Separation and Filtration:

After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.

5. Water Treatment:

In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.

6. Recirculation or Discharge:

Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.

By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.

China supplier Hf15/13 (H) Industrial Permanent Magnet Stationary Screw Air Compressor   with Great qualityChina supplier Hf15/13 (H) Industrial Permanent Magnet Stationary Screw Air Compressor   with Great quality
editor by CX 2024-02-19

China Good quality 37kw Industrial Oil Free Screw Air Compressor for Food Medical Industry Laser Cutting Engraving Welding Machine 12v air compressor

Product Description

Product Description

HY(V)-Z Series Medium Voltage Permanent Magnet Variable Frequency Screw Air Compressor

01.Advanced Medium Voltage Dual Stage Mainframe
1. Two-stage integrated design, oil mist spray cooling is used between stages, which reduces the temperature of the air, and the compression process is close to the most energy-saving isothermal compression. In principle, two-stage compression saves 5%-8% of energy compared to single-machine compression ;
2. It is suitable for the compression ratio matching of medium voltage , the leakage in the main engine is small, and the volumetric efficiency is high;
3. The bearing adopts imported heavy-duty bearing, which makes the force of the rotor better; the two-stage rotors are HY iven by helical gears respectively, so that each stage of the rotor has the best linear speed;
4. The third-generation asymmetric rotor technology, the tooth surface is processed by the German KAPP rotor grinder, creating a high-precision rotor, which is the first guarantee for the high efficiency and stability of the host.

02.High efficiency permanent magnet synchronous motor
1. IP54 protection grade, which is more stable and reliable than IP23 in harsh environment;
2. Low temperature rise design, higher efficiency, and extended the service life of the motor;
3. Use ceramic plated bearings to completely eliminate the influence of shaft current on bearings;
4. It is made of rare earth permanent magnet materials, with large torque and small current during startup and operation;
5. With reasonable magnetic field design and magnetic density distribution, the working frequency range of energy-saving motors is wider and the operating noise is low;
6. Cooperating with the operation of the frequency converter, the frequency conversion soft start is realized, which avoids the strong mechanical impact of the machine and equipment when the motor is started at full pressure, and is conducive
to protecting the mechanical equipment, reducing equipment maintenance and improving the reliability of the equipment.

03 . Special valve group
1. Intake valve: It adopts a special normally closed butterfly valve for medium voltage , with a non-return function, stable operation, high precision of air volume control, built-in noise reduction design, low cavitation noise and long service life;
2. Minimum pressure maintenance valve: special valve for medium voltage , high pressure resistance, high temperature resistance, accurate opening pressure, ensuring stable pressure in the barrel, ultra-fast return to seat, strong sealing, ensuring no backflow of gas, low pressure loss and high efficiency ;
3. Temperature control valve: The unit is equipped with a mixed-flow temperature control valve to ensure that the unit is more convenient to start in a low temperature environment, and to ensure the oil supply of the unit at any time; by controlling the oil supply temperature of the main engine to ensure that the unit is in the best performance state;
4. Oil cut-off valve: special normally closed valve for medium voltage , controlled by the exhaust pressure of the machine head. When starting up, the valve opens quickly to ensure that the compressor is lubricated and warmed up as soon as possible; when shutting down, the valve prevents oil from being ejected from the intake end.

04.Advanced and reliable electric control system
1. Large-size color LCD touch screen, with good man-machine communication interface, touch screen with anti-mistouch and sleep function;
2. It adopts double frequency conversion system, which is more energy-saving. The frequency converter and the motor are perfectly matched, and the low frequency and high torque can output 180% of the rated torque;
3. According to the characteristics of medium voltage, a special program is developed, with multiple pressure sensors and multiple temperature sensors, which can comprehensively detect the operating status of the unit, and automatically control the machine status without special care;
4. Configure the Internet of Things, you can check the operating status of the unit on the mobile phone;
5. Independent air duct design, suitable for various working conditions.

05.Silent centrifugal fan
1. Adopt centrifugal fan, brand-new separate radial cooling fan design, with special cooler, better cooling effect and more energy saving;
2. Compared with axial flow fans, centrifugal fans have higher wind pressure and lower noise;
3. Using variable frequency fan control, the oil temperature is constant, prolonging the service life of lubricating oil;
4. Due to the high wind pressure, the cooler and the filter are less likely to be blocked.

06.High quality triple filter

1. The filtration area of the air filter exceeds 150% of the normal requirement, the inlet pressure loss is low, and the energy efficiency is good;2. The oil filter adopts a full-flow built-in pressure-bearing oil filter suitable for medium voltage conditions. The rated processing capacity of the oil filter is 1.3 times the circulating oil volume. The imported filter material and the design scheme of large margin are selected, which has high filtration precision and good durability.
3. The oil is divided into special customized oil, which is designed and developed for medium-pressure working conditions, with wide applicable pressure range, good separation effect and low operating pressure loss; imported glass fiber material is selected;
4. The design of the 3 filter positions is reasonable, the maintenance is convenient, and the downtime is reduced.

07.High quality and efficient coupling
1. The coupling is a torsional elastic coupling with a failure protection function, which can effectively damp and reduce the vibration and impact generated during operation;
2. The elastic body is only under pressure and can bear a larger load, and the drum-shaped teeth of the elastic body can avoid stress concentration.   

Overall energy saving of products

Compared with power frequency air compressor, energy-saving variable frequency air compressor has practical significance.
1. The pressure control of the inverter air compressor is accurate. It can quickly respond to pressure changes, adjust the speed of the permanent magnet motor, control the pressure fluctuation range within 0.1bar, stabilize the pipe network pressure, provide the necessary air volume with the most reasonable power, and reduce excess energy consumption.
2. The variable frequency air compressor adopts the method of variable frequency starting, which eliminates the CHINAMFG current of the star-delta starting, and starts smoothly. Reduce the starting power, reduce the impact on the grid and equipment, and reduce equipment operating noise.
3. The frequency conversion control is more excellent than the ordinary throttling control. The adjustment range of the flow rate is larger, and with the high-efficiency permanent magnet motor, the energy saving effect is more significant at low percentage flow rate.
4. Most of the cost in the life cycle of the air compressor is generated by the electricity it consumes. The power consumption of the compressor is closely related to the air used on site. The inverter air compressor can not only ensure smooth and guaranteed production, but also save considerable electricity bills and achieve a CHINAMFG situation for the enterprise.

Energy consumptionMaintenance cost
Purchase cost 
Energy consumption-Maintenance cost
Purchase cost energy conservation

Product application scenarios
Mining equipment: used for high-pressure blasting mining, HY iving all kinds of pneumatic machinery.

Baling machine: the air compressor is used in the pneumatic baling machine. After compressing the air, the piston of the cylinder is pressed down to HY ive the vibrator to move quickly, so that the overlapping part of the packing belt has a hot-melt effect.

Product case

An oil field borders the CHINAMFG Sea in the East, the central ZheJiang Plain in the west, ZheJiang Province in the southeast, and the junction of ZheJiang and HangZhou in the north. It spans 25 districts, cities and counties in ZheJiang , HangZhou and ZheJiang provinces. The exploration and development construction began in January 1964, with a total exploration and development area of 18716 square meters. The oil headquarters is located in ZheJiang Xihu (West Lake) Dis. New Area, the key development and opening-up construction area of the national “Eleventh Five Year Plan”. It is 190 kilometers away from ZheJiang , 40 kilometers away from ZheZheJiang ngang and 70 kilometers away from ZheJiang International Airport. It has a superior geographical location, developed sea, land and air transportation and convenient traffic. It is an important part of the CHINAMFG rim economic circle. HY -45z from CHINAMFG company is mainly used for pipeline purging and gas supply.

M edium voltage  direct-coupled CHINAMFG

HY-Z Working pressure Capacity Power NOise Air outlet Net weight
  bar Psig (m3/min) cfm kW hp dB Pipe
diameter
 
HY-18Z 20 291 1.7 61 18 25 65 ±3 G3/4″ 868
25 364 1.7 61 18 25 65 ±3 G3/4″ 868
30 437 1.7 61 18 25 65±3 G3/4″ 868
HY-22Z 20 291 2.1 74 22 30 65±3 G3/4″ 900
25 364 2.1 74 22 30 65±3 G3/4″ 900
30 437 2.1 74 22 30 65 ±3 G3/4″ 900
35 510 1.6 57 22 30 65±3 G3/4″ 900
40 583 1.6 57 22 30 65±3 G3/4″ 900
HY-37Z 20 291 3.3 117 37 50 65 ±3 G3/4″ 1340
25 364 3.3 117 37 50 65±3 G3/4″ 1340
30 437 3.3 117 37 50 65 ± 3 G3/4″ 1340
35 510 3.0 106 37 50 65 ± 3 G3/4″ 1340
40 583 3.0 106 37 50 65±3 G3/4″ 1340
HY-55Z 20 291 6.4 225 55 75 67±3 DN32 2100
25 364 5.0 176 55 75 67±3 DN32 2100
30 437 4.7 165 55 75 67 ±3 DN32 2100
35 510 4.3 151 55 75 67±3 DN32 2100
40 583 3.8 133 55 75 67 ±3 DN32 2100
HY-75Z 20 291 7.2 255 75 100 68±3 DN32 2300
25 364 7.0 248 75 100 68±3 DN32 2300
30 437 6.7 237 75 100 68±3 DN32 2300
35 510 6.3 223 75 100 68±3 DN32 2300
40 583 5.7 201 75 100 68±3 DN32 2300
HY-90Z 20 291 12.0 423 90 120 70 ±3 DN32 2800
25 364 10.3 364 90 120 70±3 DN32 2800
30 437 10.0 353 90 120 70 ±3 DN32 2800
35 510 6.3 223 90 120 70±3 DN32 2800
40 583 5.8 205 90 120 70±3 DN32 2800
HY-110Z 20 291 13.7 483 110 150 72 ±3 DN40 3000
25 364 12.5 440 110 150 72 ±3 DN40 3000
30 437 10.3 363 110 150 72 ±3 DN40 3000
35 510 9.6 339 110 150 72 ±3 DN40 3000
40 583 9.1 321 110 150 72 ±3 DN40 3000
HY-132Z 20 291 16.3 576 132 175 74 ±3 DN50 3200
25 364 13.5 476 132 175 74±3 DN50 3200
30 437 12.2 430 132 175 74 ±3 DN50 3200
35 510 11.8 416 132 175 74 ±3 DN50 3200
40 583 11.3 398 132 175 74 ±3 DN50 3200
HY-160Z 20 291 20.0 706 160 215 75 ±3 DN50 3600
25 364 16.1 567 160 215 75 ±3 DN50 3600
HY-185Z 20 291 23.5 829 185 250 76±3 DN50 3800
25 364 18.5 652 185 250 76±3 DN50 3800
HY-200Z 20 291 26.0 918 200 270 76±3 DN50 4800
25 364 22.9 809 200 270 76±3 DN50 4800
30 437 22.2 783 200 270 76 ±3 DN50 4800
HY-200ZW 20 291 30.2 1067 220 300 78 ±3 DN65 5000
25 364 25.8 911 220 300 78 ±3 DN65 5000
30 437 23.2 819 220 300 78±3 DN65 5000
35 510 22.0 776 220 300 78±3 DN65 5000
HY-250ZW 20 291 34.2 1207 250 350 78±3 DN65 5500
25 364 29.1 1026 250 350 78 ±3 DN65 5500
30 437 27.5 972 250 350 78±3 DN65 5500
35 510 25.2 888 250 350 78±3 DN65 5500
40 583 22.8 804 250 350 78±3 DN65 5500
HY-280ZW 20 291 37.7 1330 280 375 80±3 DN65 5800
25 364 34.0 1200 280 375 80±3 DN65 5800
30 437 30.0 1060 280 375 80±3 DN65 5800
35 510 27.3 965 280 375 80±3 DN65 5800
40 583 25.0 881 280 375 80±3 DN65 5800
HY-315ZW 30 437 33.7 1189 315 422 80±3 DN65 6400
35 510 29.8 1053 315 422 80±3 DN65 6400
40 583 27.1 958 315 422 80±3 DN65 6400

CHINAMFG compressor product parameter table follows
1 The exhaust gas volume value is the gas volume flow rate in the following state (temperature: 32°C, atmospheric pressure: 101.325KPa)
2. Pressure value after exhaust pressure check valve
3. The noise value is the value in the anechoic chamber, test tolerance: 3dB(A)

Medium voltage  permanent magnet variable frequency CHINAMFG

HY(V)-Z  Working pressure Capacity Power Noise Air outlet Net weight
bar psig (m3/min) cfm kW hp dB Pipe diameter  
HYV-55Z 20 291 3.8-6.4 134-226 55 75 67±3 DN32 2200
25 364 3.6-6.0 127-212 55 75 67±3 DN32 2200
30 437 3.1-5.2 109-184 55 75 67±3 DN32 2200
35 510 2.6-4.3 92-152 55 75 67±3 DN32 2200
40 583 2.3-3.8 81-134 55 75 67±3 DN32 2200
HYV-75Z 20 291 4.6-7.7 162-272 75 100 68±3 DN32 2400
25 364 4.5-7.5 159-265 75 100 68±3 DN32 2400
30 437 4.0-6.7 141-237 75 100 68±3 DN32 2400
35 510 3.8-6.3 134-222 75 100 68±3 DN32 2400
40 583 3.0-5.0 106-177 75 100 68±3 DN32 2400
HY-90Z 20 291 6.7-11.2 237-396 90 120 70±3 DN32 2800
25 364 6.2-10.3 219-364 90 120 70±3 DN32 2800
30 437 6.0-10.0 212-353 90 120 70±3 DN32 2800
35 510 4.1-6.8 145-240 90 120 70±3 DN32 2800
40 583 3.8-6.3 134-222 90 120 70±3 DN32 2800
HYV-110Z 20 291 8.2-13.6 290-480 110 150 72±3 DN40 3100
25 364 7.5-12.5 265-441 110 150 72±3 DN40 3100
30 437 6.5-10.8 230-381 110 150 72±3 DN40 3100
35 510 5.8-9.6 205-339 110 150 72±3 DN40 3100
40 583 5.5-9.1 194-321 110 150 72±3 DN40 3100
HYV-132Z 20 291 10.1-16.8 357-593 132 175 74±3 DN40 3300
25 364 9.0-15.0 318-530 132 175 74±3 DN40 3300
30 437 7.9-13.1 279-463 132 175 74±3 DN40 3300
35 510 7.1-11.8 251-417 132 175 74±3 DN40 3300
40 583 6.8-11.3 240-399 132 175 74±3 DN40 3300
HYV-160Z 20 291 9.6-16.0 339-565 160 215 75±3 DN50 3800
25 364 10.0-16.6 353-586 160 215 75±3 DN50 3800
30 437 9.8-16.3 346-576 160 215 75±3 DN40 3700
35 510 9.4-15.6 332-551 160 215 75±3 DN50 3800
40 583 8.3-13.8 293-487 160 215 75±3 DN40 3700
HYV-185Z 20 291 14.1-23.5 498-830 185 250 76±3 DN50 4000
25 364 11.7-19.5 413-689 185 250 76±3 DN50 4000
HYV-200Z 20 291 15.6-26.0 551-918 200 270 76±3 DN50 4200
25 364 13.7-22.9 484-809 200 270 76±3 DN50 4200
30 437 13.3-22.2 470-784 200 270 76±3 DN50 4200
HYV-220ZW 20 291 17.8-29.7 629-1049 220 300 78±3 DN65 5000
25 364 15.5-25.8 547-911 220 300 78±3 DN65 5000
30 437 13.9-23.2 491-819 220 300 78±3 DN65 5000
35 510 13.2-22.0 565-777 220 300 78±3 DN65 5000
40 583 12.2-20.3 431-717 220 300 78±3 DN65 5000
HYV-250ZW 20 291 20.5-34.2 724-1208 250 350 78±3 DN65 5700
25 364 17.5-29.1 618-1571 250 350 78±3 DN65 5700
30 437 16.5-27.5 583-971 250 350 78±3 DN65 5700
35 510 15.1-25.2 533-890 250 350 78±3 DN65 5700
40 583 13.7-22.8 484-805 250 350 78±3 DN65 5700
HYV-280ZW 20 291 22.6-37.7 798-1331 280 375 80±3 DN65 6000
25 364 20.4-34.0 720-1201 280 375 80±3 DN65 6000
30 437 18.0-30.0 636-1059 280 375 80±3 DN65 6000
35 510 16.4-27.3 579-964 280 375 80±3 DN65 6000
40 583 15.0-25.0 530-883 280 375 80±3 DN65 6500

4. Please consult our company for use in harsh working conditions such as high temperature, high humidity, high cold and high dust
5. Dimensions and weight of the whole machine are subject to change without prior notice
5. Please do not use compressed air directly for medical equipment inhaled by the human body

FAQ
 

Q1: What is the rotor speed for the air end?
A1: 2980rmp.

Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)

Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).

Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.

Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.

Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.

Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.

Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.

Q9: Do you have spare parts in stock?
A9: Yes, we do.

Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provide After-Sell Sevice
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Movable Type
Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China Good quality 37kw Industrial Oil Free Screw Air Compressor for Food Medical Industry Laser Cutting Engraving Welding Machine   12v air compressorChina Good quality 37kw Industrial Oil Free Screw Air Compressor for Food Medical Industry Laser Cutting Engraving Welding Machine   12v air compressor
editor by CX 2024-02-18

China Custom American Industrial Spiral Air Compressor for Sale mini air compressor

Product Description

 

American Industrial Spiral Air Compressor for Sale

CHINAMFG WBS screw air compressor are with compact design , turbo radial fan and direct drive which bring you outstanding reliability and performance. A choice of 2 compressor types ( WBS , WBS VSD) provide you with the compressed air solution that perfectly matches your requirements.
 

Features:

1. Compact and silent design

2. Turbo radial fan 

3. Direct drive

4. Colourful touching display with indication of service time , running status.

5. Auto-start

6. Remote contol 

7. Cloud data monitoring program.

Product Parameters

Model No.

Working pressure

bar

Capacity(FAD)

m3/min

Power

kw

Driving model

Cooling method 

Noise level

dB

Outlet diameter

Weight

kg

Dimension 

mm

WBS7.5

7

1.2 7.5

Direct

Air cooling(Standard)

63 G3/4″ 400 890*560*840
8 1.1
10 1.0
12 0.8
WBS11 7 1.8 11

Direct

Air cooling(Standard)

64

G3/4″ 460 1050*690*1080
8 1.6
10 1.5
12 1.3
WBS15 7 2.6 15

Direct

Air cooling(Standard

65 G3/4″ 500 1050*690*1080
8 2.4
10 2.1
12 1.8
WBS22 7  3.7 22

Direct driven 

Air cooling

65 G1″  550 1350*780*1250
8  3.5
10  3.1
12  2.7
WBS30     7 5.3 30

Direct driven 

Air cooling

67    G1-1/2″    940    1420*900*1425
 8 5.1
10 4.6
12 3.9
WBS37 7 6.5 37

Direct driven

Air cooling

67 G1-1/2″ 1000 1420*900*1425
8 6.2
10 5.6
12 4.9
WBS45 7 8.1 45

Direct driven

Air cooling

 70 G1-1/2″  1050  1750*1100*1700
8 7.5
10 7.0
12 6.0
WBS55 7 10.5 55

Direct driven

Air cooling

73 G2″ 1500 1750*1100*1700
8 10
9 9.0
12 8.0
WBS75 7 14.3 75

Direct driven 

Air cooling

75 G2″ 1700 1750*1100*1700

Certifications

Company Profile

Windbell Electrics is a high-tech company, located in HangZhou National High and New Technology Industries Development Zone, began to manufacturing screw air compressor from year 2006. In year 2011, CHINAMFG Machinery was registered as an independent subsidiary of CHINAMFG Electrics.

Windbell machinery has responsible employees equipped with 5 0 testing machines working in the plant area of 3200 square meter.
A qualified profile R & D team with experience in developing products with G H H-RAND and ROTORCOMP, has 13 patents granted. The company can produce 4, 0 0 0 screw air compressor every year.
We believe that without an good quality management system you cannot make good quality products. With I S O 9 0 0 1 ,I S O 1 4 0 0 1 and CE certifications, the company aims to be a CHINAMFG in offering consumers efficient, energy-saving, and environment-friendly solutions in the application of air compressor. Based on its R & D output, the company has successfully applied its solutions to the field of mining, tunneling, outdoor construction and its technology also facilitates the production of medical oxygen generators and textile equipment.

Our electrical stationary screw air compressor from 7.5-75 kw is equipped with turbo radial fan which is more efficient and quiet .The products are sold  to Southeast Asia, South America,Central Asia, Middle East, Africa, and America.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 1 Year
Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Structure Type: Open Type
Key Words: Air Compressor
Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Custom American Industrial Spiral Air Compressor for Sale   mini air compressorChina Custom American Industrial Spiral Air Compressor for Sale   mini air compressor
editor by CX 2024-02-17