Product Description
Product Description
HY(V)-Z Series Medium Voltage Permanent Magnet Variable Frequency Screw Air Compressor
01.Advanced Medium Voltage Dual Stage Mainframe
1. Two-stage integrated design, oil mist spray cooling is used between stages, which reduces the temperature of the air, and the compression process is close to the most energy-saving isothermal compression. In principle, two-stage compression saves 5%-8% of energy compared to single-machine compression ;
2. It is suitable for the compression ratio matching of medium voltage , the leakage in the main engine is small, and the volumetric efficiency is high;
3. The bearing adopts imported heavy-duty bearing, which makes the force of the rotor better; the two-stage rotors are HY iven by helical gears respectively, so that each stage of the rotor has the best linear speed;
4. The third-generation asymmetric rotor technology, the tooth surface is processed by the German KAPP rotor grinder, creating a high-precision rotor, which is the first guarantee for the high efficiency and stability of the host.
02.High efficiency permanent magnet synchronous motor
1. IP54 protection grade, which is more stable and reliable than IP23 in harsh environment;
2. Low temperature rise design, higher efficiency, and extended the service life of the motor;
3. Use ceramic plated bearings to completely eliminate the influence of shaft current on bearings;
4. It is made of rare earth permanent magnet materials, with large torque and small current during startup and operation;
5. With reasonable magnetic field design and magnetic density distribution, the working frequency range of energy-saving motors is wider and the operating noise is low;
6. Cooperating with the operation of the frequency converter, the frequency conversion soft start is realized, which avoids the strong mechanical impact of the machine and equipment when the motor is started at full pressure, and is conducive
to protecting the mechanical equipment, reducing equipment maintenance and improving the reliability of the equipment.
03 . Special valve group
1. Intake valve: It adopts a special normally closed butterfly valve for medium voltage , with a non-return function, stable operation, high precision of air volume control, built-in noise reduction design, low cavitation noise and long service life;
2. Minimum pressure maintenance valve: special valve for medium voltage , high pressure resistance, high temperature resistance, accurate opening pressure, ensuring stable pressure in the barrel, ultra-fast return to seat, strong sealing, ensuring no backflow of gas, low pressure loss and high efficiency ;
3. Temperature control valve: The unit is equipped with a mixed-flow temperature control valve to ensure that the unit is more convenient to start in a low temperature environment, and to ensure the oil supply of the unit at any time; by controlling the oil supply temperature of the main engine to ensure that the unit is in the best performance state;
4. Oil cut-off valve: special normally closed valve for medium voltage , controlled by the exhaust pressure of the machine head. When starting up, the valve opens quickly to ensure that the compressor is lubricated and warmed up as soon as possible; when shutting down, the valve prevents oil from being ejected from the intake end.
04.Advanced and reliable electric control system
1. Large-size color LCD touch screen, with good man-machine communication interface, touch screen with anti-mistouch and sleep function;
2. It adopts double frequency conversion system, which is more energy-saving. The frequency converter and the motor are perfectly matched, and the low frequency and high torque can output 180% of the rated torque;
3. According to the characteristics of medium voltage, a special program is developed, with multiple pressure sensors and multiple temperature sensors, which can comprehensively detect the operating status of the unit, and automatically control the machine status without special care;
4. Configure the Internet of Things, you can check the operating status of the unit on the mobile phone;
5. Independent air duct design, suitable for various working conditions.
05.Silent centrifugal fan
1. Adopt centrifugal fan, brand-new separate radial cooling fan design, with special cooler, better cooling effect and more energy saving;
2. Compared with axial flow fans, centrifugal fans have higher wind pressure and lower noise;
3. Using variable frequency fan control, the oil temperature is constant, prolonging the service life of lubricating oil;
4. Due to the high wind pressure, the cooler and the filter are less likely to be blocked.
06.High quality triple filter
1. The filtration area of the air filter exceeds 150% of the normal requirement, the inlet pressure loss is low, and the energy efficiency is good;2. The oil filter adopts a full-flow built-in pressure-bearing oil filter suitable for medium voltage conditions. The rated processing capacity of the oil filter is 1.3 times the circulating oil volume. The imported filter material and the design scheme of large margin are selected, which has high filtration precision and good durability.
3. The oil is divided into special customized oil, which is designed and developed for medium-pressure working conditions, with wide applicable pressure range, good separation effect and low operating pressure loss; imported glass fiber material is selected;
4. The design of the 3 filter positions is reasonable, the maintenance is convenient, and the downtime is reduced.
07.High quality and efficient coupling
1. The coupling is a torsional elastic coupling with a failure protection function, which can effectively damp and reduce the vibration and impact generated during operation;
2. The elastic body is only under pressure and can bear a larger load, and the drum-shaped teeth of the elastic body can avoid stress concentration.
Overall energy saving of products
Compared with power frequency air compressor, energy-saving variable frequency air compressor has practical significance.
1. The pressure control of the inverter air compressor is accurate. It can quickly respond to pressure changes, adjust the speed of the permanent magnet motor, control the pressure fluctuation range within 0.1bar, stabilize the pipe network pressure, provide the necessary air volume with the most reasonable power, and reduce excess energy consumption.
2. The variable frequency air compressor adopts the method of variable frequency starting, which eliminates the CHINAMFG current of the star-delta starting, and starts smoothly. Reduce the starting power, reduce the impact on the grid and equipment, and reduce equipment operating noise.
3. The frequency conversion control is more excellent than the ordinary throttling control. The adjustment range of the flow rate is larger, and with the high-efficiency permanent magnet motor, the energy saving effect is more significant at low percentage flow rate.
4. Most of the cost in the life cycle of the air compressor is generated by the electricity it consumes. The power consumption of the compressor is closely related to the air used on site. The inverter air compressor can not only ensure smooth and guaranteed production, but also save considerable electricity bills and achieve a CHINAMFG situation for the enterprise.
Energy consumptionMaintenance cost
Purchase cost
Energy consumption-Maintenance cost
Purchase cost energy conservation
Product application scenarios
Mining equipment: used for high-pressure blasting mining, HY iving all kinds of pneumatic machinery.
Baling machine: the air compressor is used in the pneumatic baling machine. After compressing the air, the piston of the cylinder is pressed down to HY ive the vibrator to move quickly, so that the overlapping part of the packing belt has a hot-melt effect.
Product case
An oil field borders the CHINAMFG Sea in the East, the central ZheJiang Plain in the west, ZheJiang Province in the southeast, and the junction of ZheJiang and HangZhou in the north. It spans 25 districts, cities and counties in ZheJiang , HangZhou and ZheJiang provinces. The exploration and development construction began in January 1964, with a total exploration and development area of 18716 square meters. The oil headquarters is located in ZheJiang Xihu (West Lake) Dis. New Area, the key development and opening-up construction area of the national “Eleventh Five Year Plan”. It is 190 kilometers away from ZheJiang , 40 kilometers away from ZheZheJiang ngang and 70 kilometers away from ZheJiang International Airport. It has a superior geographical location, developed sea, land and air transportation and convenient traffic. It is an important part of the CHINAMFG rim economic circle. HY -45z from CHINAMFG company is mainly used for pipeline purging and gas supply.
M edium voltage direct-coupled CHINAMFG
| HY-Z | Working pressure | Capacity | Power | NOise | Air outlet | Net weight | |||
| bar | Psig | (m3/min) | cfm | kW | hp | dB | Pipe diameter |
||
| HY-18Z | 20 | 291 | 1.7 | 61 | 18 | 25 | 65 ±3 | G3/4″ | 868 |
| 25 | 364 | 1.7 | 61 | 18 | 25 | 65 ±3 | G3/4″ | 868 | |
| 30 | 437 | 1.7 | 61 | 18 | 25 | 65±3 | G3/4″ | 868 | |
| HY-22Z | 20 | 291 | 2.1 | 74 | 22 | 30 | 65±3 | G3/4″ | 900 |
| 25 | 364 | 2.1 | 74 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| 30 | 437 | 2.1 | 74 | 22 | 30 | 65 ±3 | G3/4″ | 900 | |
| 35 | 510 | 1.6 | 57 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| 40 | 583 | 1.6 | 57 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| HY-37Z | 20 | 291 | 3.3 | 117 | 37 | 50 | 65 ±3 | G3/4″ | 1340 |
| 25 | 364 | 3.3 | 117 | 37 | 50 | 65±3 | G3/4″ | 1340 | |
| 30 | 437 | 3.3 | 117 | 37 | 50 | 65 ± 3 | G3/4″ | 1340 | |
| 35 | 510 | 3.0 | 106 | 37 | 50 | 65 ± 3 | G3/4″ | 1340 | |
| 40 | 583 | 3.0 | 106 | 37 | 50 | 65±3 | G3/4″ | 1340 | |
| HY-55Z | 20 | 291 | 6.4 | 225 | 55 | 75 | 67±3 | DN32 | 2100 |
| 25 | 364 | 5.0 | 176 | 55 | 75 | 67±3 | DN32 | 2100 | |
| 30 | 437 | 4.7 | 165 | 55 | 75 | 67 ±3 | DN32 | 2100 | |
| 35 | 510 | 4.3 | 151 | 55 | 75 | 67±3 | DN32 | 2100 | |
| 40 | 583 | 3.8 | 133 | 55 | 75 | 67 ±3 | DN32 | 2100 | |
| HY-75Z | 20 | 291 | 7.2 | 255 | 75 | 100 | 68±3 | DN32 | 2300 |
| 25 | 364 | 7.0 | 248 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 30 | 437 | 6.7 | 237 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 35 | 510 | 6.3 | 223 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 40 | 583 | 5.7 | 201 | 75 | 100 | 68±3 | DN32 | 2300 | |
| HY-90Z | 20 | 291 | 12.0 | 423 | 90 | 120 | 70 ±3 | DN32 | 2800 |
| 25 | 364 | 10.3 | 364 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 30 | 437 | 10.0 | 353 | 90 | 120 | 70 ±3 | DN32 | 2800 | |
| 35 | 510 | 6.3 | 223 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 40 | 583 | 5.8 | 205 | 90 | 120 | 70±3 | DN32 | 2800 | |
| HY-110Z | 20 | 291 | 13.7 | 483 | 110 | 150 | 72 ±3 | DN40 | 3000 |
| 25 | 364 | 12.5 | 440 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 30 | 437 | 10.3 | 363 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 35 | 510 | 9.6 | 339 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 40 | 583 | 9.1 | 321 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| HY-132Z | 20 | 291 | 16.3 | 576 | 132 | 175 | 74 ±3 | DN50 | 3200 |
| 25 | 364 | 13.5 | 476 | 132 | 175 | 74±3 | DN50 | 3200 | |
| 30 | 437 | 12.2 | 430 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| 35 | 510 | 11.8 | 416 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| 40 | 583 | 11.3 | 398 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| HY-160Z | 20 | 291 | 20.0 | 706 | 160 | 215 | 75 ±3 | DN50 | 3600 |
| 25 | 364 | 16.1 | 567 | 160 | 215 | 75 ±3 | DN50 | 3600 | |
| HY-185Z | 20 | 291 | 23.5 | 829 | 185 | 250 | 76±3 | DN50 | 3800 |
| 25 | 364 | 18.5 | 652 | 185 | 250 | 76±3 | DN50 | 3800 | |
| HY-200Z | 20 | 291 | 26.0 | 918 | 200 | 270 | 76±3 | DN50 | 4800 |
| 25 | 364 | 22.9 | 809 | 200 | 270 | 76±3 | DN50 | 4800 | |
| 30 | 437 | 22.2 | 783 | 200 | 270 | 76 ±3 | DN50 | 4800 | |
| HY-200ZW | 20 | 291 | 30.2 | 1067 | 220 | 300 | 78 ±3 | DN65 | 5000 |
| 25 | 364 | 25.8 | 911 | 220 | 300 | 78 ±3 | DN65 | 5000 | |
| 30 | 437 | 23.2 | 819 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 35 | 510 | 22.0 | 776 | 220 | 300 | 78±3 | DN65 | 5000 | |
| HY-250ZW | 20 | 291 | 34.2 | 1207 | 250 | 350 | 78±3 | DN65 | 5500 |
| 25 | 364 | 29.1 | 1026 | 250 | 350 | 78 ±3 | DN65 | 5500 | |
| 30 | 437 | 27.5 | 972 | 250 | 350 | 78±3 | DN65 | 5500 | |
| 35 | 510 | 25.2 | 888 | 250 | 350 | 78±3 | DN65 | 5500 | |
| 40 | 583 | 22.8 | 804 | 250 | 350 | 78±3 | DN65 | 5500 | |
| HY-280ZW | 20 | 291 | 37.7 | 1330 | 280 | 375 | 80±3 | DN65 | 5800 |
| 25 | 364 | 34.0 | 1200 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 30 | 437 | 30.0 | 1060 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 35 | 510 | 27.3 | 965 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 40 | 583 | 25.0 | 881 | 280 | 375 | 80±3 | DN65 | 5800 | |
| HY-315ZW | 30 | 437 | 33.7 | 1189 | 315 | 422 | 80±3 | DN65 | 6400 |
| 35 | 510 | 29.8 | 1053 | 315 | 422 | 80±3 | DN65 | 6400 | |
| 40 | 583 | 27.1 | 958 | 315 | 422 | 80±3 | DN65 | 6400 | |
CHINAMFG compressor product parameter table follows
1 The exhaust gas volume value is the gas volume flow rate in the following state (temperature: 32°C, atmospheric pressure: 101.325KPa)
2. Pressure value after exhaust pressure check valve
3. The noise value is the value in the anechoic chamber, test tolerance: 3dB(A)
Medium voltage permanent magnet variable frequency CHINAMFG
| HY(V)-Z | Working pressure | Capacity | Power | Noise | Air outlet | Net weight | |||
| bar | psig | (m3/min) | cfm | kW | hp | dB | Pipe diameter | ||
| HYV-55Z | 20 | 291 | 3.8-6.4 | 134-226 | 55 | 75 | 67±3 | DN32 | 2200 |
| 25 | 364 | 3.6-6.0 | 127-212 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 30 | 437 | 3.1-5.2 | 109-184 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 35 | 510 | 2.6-4.3 | 92-152 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 40 | 583 | 2.3-3.8 | 81-134 | 55 | 75 | 67±3 | DN32 | 2200 | |
| HYV-75Z | 20 | 291 | 4.6-7.7 | 162-272 | 75 | 100 | 68±3 | DN32 | 2400 |
| 25 | 364 | 4.5-7.5 | 159-265 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 30 | 437 | 4.0-6.7 | 141-237 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 35 | 510 | 3.8-6.3 | 134-222 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 40 | 583 | 3.0-5.0 | 106-177 | 75 | 100 | 68±3 | DN32 | 2400 | |
| HY-90Z | 20 | 291 | 6.7-11.2 | 237-396 | 90 | 120 | 70±3 | DN32 | 2800 |
| 25 | 364 | 6.2-10.3 | 219-364 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 30 | 437 | 6.0-10.0 | 212-353 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 35 | 510 | 4.1-6.8 | 145-240 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 40 | 583 | 3.8-6.3 | 134-222 | 90 | 120 | 70±3 | DN32 | 2800 | |
| HYV-110Z | 20 | 291 | 8.2-13.6 | 290-480 | 110 | 150 | 72±3 | DN40 | 3100 |
| 25 | 364 | 7.5-12.5 | 265-441 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 30 | 437 | 6.5-10.8 | 230-381 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 35 | 510 | 5.8-9.6 | 205-339 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 40 | 583 | 5.5-9.1 | 194-321 | 110 | 150 | 72±3 | DN40 | 3100 | |
| HYV-132Z | 20 | 291 | 10.1-16.8 | 357-593 | 132 | 175 | 74±3 | DN40 | 3300 |
| 25 | 364 | 9.0-15.0 | 318-530 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 30 | 437 | 7.9-13.1 | 279-463 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 35 | 510 | 7.1-11.8 | 251-417 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 40 | 583 | 6.8-11.3 | 240-399 | 132 | 175 | 74±3 | DN40 | 3300 | |
| HYV-160Z | 20 | 291 | 9.6-16.0 | 339-565 | 160 | 215 | 75±3 | DN50 | 3800 |
| 25 | 364 | 10.0-16.6 | 353-586 | 160 | 215 | 75±3 | DN50 | 3800 | |
| 30 | 437 | 9.8-16.3 | 346-576 | 160 | 215 | 75±3 | DN40 | 3700 | |
| 35 | 510 | 9.4-15.6 | 332-551 | 160 | 215 | 75±3 | DN50 | 3800 | |
| 40 | 583 | 8.3-13.8 | 293-487 | 160 | 215 | 75±3 | DN40 | 3700 | |
| HYV-185Z | 20 | 291 | 14.1-23.5 | 498-830 | 185 | 250 | 76±3 | DN50 | 4000 |
| 25 | 364 | 11.7-19.5 | 413-689 | 185 | 250 | 76±3 | DN50 | 4000 | |
| HYV-200Z | 20 | 291 | 15.6-26.0 | 551-918 | 200 | 270 | 76±3 | DN50 | 4200 |
| 25 | 364 | 13.7-22.9 | 484-809 | 200 | 270 | 76±3 | DN50 | 4200 | |
| 30 | 437 | 13.3-22.2 | 470-784 | 200 | 270 | 76±3 | DN50 | 4200 | |
| HYV-220ZW | 20 | 291 | 17.8-29.7 | 629-1049 | 220 | 300 | 78±3 | DN65 | 5000 |
| 25 | 364 | 15.5-25.8 | 547-911 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 30 | 437 | 13.9-23.2 | 491-819 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 35 | 510 | 13.2-22.0 | 565-777 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 40 | 583 | 12.2-20.3 | 431-717 | 220 | 300 | 78±3 | DN65 | 5000 | |
| HYV-250ZW | 20 | 291 | 20.5-34.2 | 724-1208 | 250 | 350 | 78±3 | DN65 | 5700 |
| 25 | 364 | 17.5-29.1 | 618-1571 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 30 | 437 | 16.5-27.5 | 583-971 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 35 | 510 | 15.1-25.2 | 533-890 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 40 | 583 | 13.7-22.8 | 484-805 | 250 | 350 | 78±3 | DN65 | 5700 | |
| HYV-280ZW | 20 | 291 | 22.6-37.7 | 798-1331 | 280 | 375 | 80±3 | DN65 | 6000 |
| 25 | 364 | 20.4-34.0 | 720-1201 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 30 | 437 | 18.0-30.0 | 636-1059 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 35 | 510 | 16.4-27.3 | 579-964 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 40 | 583 | 15.0-25.0 | 530-883 | 280 | 375 | 80±3 | DN65 | 6500 | |
4. Please consult our company for use in harsh working conditions such as high temperature, high humidity, high cold and high dust
5. Dimensions and weight of the whole machine are subject to change without prior notice
5. Please do not use compressed air directly for medical equipment inhaled by the human body
FAQ
Q1: What is the rotor speed for the air end?
A1: 2980rmp.
Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)
Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).
Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.
Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.
Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.
Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.
Q9: Do you have spare parts in stock?
A9: Yes, we do.
Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Provide After-Sell Sevice |
|---|---|
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-02-18
China wholesaler for Beauty Industry and Hospital Medical Oil-Free Silent Air Compressor air compressor repair near me
Product Description
Product Paramenter
|
ITEM NO |
GLE210B |
|
Name |
Oil free air compressor |
|
Packing |
4 pcs / carton case , 200 pcs / pallet |
|
Weight |
4.0 kg |
|
Dimension |
176*95*143 mm |
|
Installation size |
70*114 ( 4*M6) mm |
|
Technical Specification |
Voltage : AC220V 50Hz / 110V 60Hz Power: <=180 W ; Rated air flow rate: >=50 L/min @ 1.4 bar ; Rate working pressure : 1.4 bar ; Restart pressure : 0 bar ; Noise : ≤45dB(A) ; Speed: 1440rpm / 1700rpm ; Temperature : -5ºC-40ºC ; Thermal protector : 135ºC ; Insulation class: B |
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Brand Name: | OEM |
| Voltage: | According to Your Requirement |
| Core Components: | Engine, Motor |
| Samples: |
US$ 48/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-12-13