Tag Archives: air compressor china

China manufacturer 15L 1500W Portable Brushless Oil Free Air Compressor Gdy-990K with Great quality

Product Description

2HP Brushless Air Compressor 15L Tank, 1500W Oil Free Silent Portable Oil-Less Low Noise 4 Gallon Tank Air Compressor GDY-990K
 

Brushless Compressor Advantage 
 

The complete product line for wood finishing, Decorative, Furniture finishing, Painting industry, Industrial Application, construction industry, Architectural Coating, Scenic Painting, Cosmetic industries, Painting and Sculpture primer Painting jar etc.

A: Mini portable tools, it works anytime anywhere after connecting power without air charging
B: Motor without brush, will decrease lots of frictions, smoothly running, low noise, it’s a large support to stable
C, Motor without brush, will not invite the electro-spark while running, so that get the interferences to wireless remote equip down.
Brushless motor hardly maintaining with oil, if necessary. Only clean little dust, usually, Motor running 10 times cycles more than Brush item.
E: LCD smart setting mode, pressure setting with comparing Brushless motor could be input converted frequency. Will supply correct power as actual request, it saves much cost of poeer consumption.

Main Features:
Use it under the circumstance of without power supply.home decoration,nail gun(instead of gas nail gun),air screwdriver,tyre inflation,dust extraction,ect.

Applicable Industries: Building Material Shops, Home Use, Retail, Construction works , advisor
Model: Brushless air compressor, portable and oil free air compressor
Power: 1500W (2HP)
Power Source: AC POWER
AIR TANK 15L Alumumum air tank
AIR FLOW: 250L/MIN
Mute: Yes
Voltage: 220V/110V
Certification: CE
Warranty: 1 Year
After-sales Service Provided: Field installation, commissioning and training
N.W: 23KG
Lubrication Style: OIL-LESS

 

 

 

After-sales Service: Online Serice
Warranty: One Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Series Arrangement
Cylinder Position: Horizontal
Samples:
US$ 249/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China manufacturer 15L 1500W Portable Brushless Oil Free Air Compressor Gdy-990K   with Great qualityChina manufacturer 15L 1500W Portable Brushless Oil Free Air Compressor Gdy-990K   with Great quality
editor by CX 2023-11-18

China OEM Truck Air Compressor with Quality Warranty for Scania Truck 2 / 3 / 4 / Pgrt Series air compressor repair near me

Product Description

GENERAL CONDITIONS
When working on or around a vehicle, the following general precautions should be observed at all times.
1. Park the vehicle on a level surface, apply the parking brakes, and always block the wheels.
2. Stop the engine when working around the vehicle.
3. If the vehicle is equipped with air brakes, make certain to drain the air pressure from all reservoirs before
 beginning any work on the vehicle.
4. Follow the vehicle manufacturer’s recommended procedures, deactivate the electrical system in manner that
 removes all electrical power from the vehicle.
5. When working in the engine compartment the engine should be shut off. Where circumstances require that
 the engine be in operation, extreme caution should be used to prevent personal injury resulting from contact
 with moving, rotating, leaking, heated, or electrically charged components.
6. Never connect or disconnect a hose or line containing pressure; it may whip. Never remove a component or
 plug unless you are certain all system pressure has been depleted.
7. Never exceed recommended pressures and always wear safety glasses.
8. Do not attempt to install, remove, disassemble or assemble a component until you have read and thoroughly
 understand the recommended procedures. Use only the proper tools and observe all precautions pertaining
 to use of those tools.
9. Replacement hardware, tubing, hose, fittings, etc. should be of equivalent size, type, and strength as original
 equipment and be designed specifically for such applications and systems.
10. Components with stripped threads or damaged parts should be replaced rather than repaired. Repairs
 requiring machining or welding should not be attempted unless specifically approved and stated by the
 vehicle or component manufacturer.
11. Prior to returning the vehicle to service, make certain all components and systems are restored to their
 proper operating condition.

================================================================================================================ 

EASTIGER is a professional supplier for truck spare parts since 2005, we have +20000 items including brake parts, steering parts, suspension parts, transmission parts, engine parts, cooling parts, electrical parts and body parts for the following truck:

1. For MERCEDES: Actros, Axor, Atego, SK, NG , Econic

2. For VOLVO: FH, FH12, FH16, FM9, FM12, FL
 

3. For SCANIA: P/G/R/T, 4 series, 3 series

 

4. For MAN: TGX, TGS, TGL, TGM, TGA, F2000

 

5. For RENAULT: Premium, Magnum, Midlum, Kerax
 

6. For DAF: XF105, XF95, XF85, CF65, LF55, LF45
 

7. For IVECO: Stralis, Eurocargo, Eurotech, Eurostar

===============================================================================================================

ONE STOP SHOPPING

More than 100 items for SCANIA  AIR COMPRESSORS, such as following:

Air Compressor KZ996.2
1189107
301525
571182
314107
1314107
1348920
571186
Air Compressor KZ642.2
1300366
1186720
1189106
300162
1348919
1303226
Air Compressor LP4964
138 0571
571286
1470303
1514063
1132687
Air Compressor LP4965
138571
571287
147034
1132688
Air Compressor LK3972
II34848
1390008
1134848
571000
Air Compressor LK4941
1796663
1784019
1514064
Air Compressor LP4815
571184
1303227
Air Compressor LP4957
1349094
1531073
571188
Air Compressor KZ396.2
232615
Air Compressor LK3976 – K057180
1514065
1798525
Air Compressor KZ1228.1
394441
Air Compressor LK3971
1390026
Air Compressor LP4814
571183
1303226
Air Compressor LK4930
1537794
Air Compressor LP4844
1381951
1381961
Air Compressor LP4963
138 0571
1132686
Air Compressor LP4966
II32689
1379066
Air Compressor 2571413
2571412
Air Compressor 2571410
1901246
   

Classification: Variable Capacity
Ts: 16949
ISO: 9001
Transport Package: Carton / Wooden Box
Specification: Standard
Trademark: Customer brand or our brand
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China OEM Truck Air Compressor with Quality Warranty for Scania Truck 2 / 3 / 4 / Pgrt Series   air compressor repair near meChina OEM Truck Air Compressor with Quality Warranty for Scania Truck 2 / 3 / 4 / Pgrt Series   air compressor repair near me
editor by CX 2023-11-17

China OEM Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr30A/W 30kw with Hot selling

Product Description

Lead Time

Product Description

TR30A/WL 0.4Mpa 4Bar 6.7m3/min 30KW screw type energy-saving low pressure oil free air compressor

Specifications
 

Model Maximum working Pressure FAD Motor Power Noise Pipe diameters of cooling water in and out Quantity of  Quantity of lubricating water Dimension Weight Air outlet
cooling water
 Inlet water L*W*H
32ºC 
Mpa M3/min KW/HP DB  T/H L mm KG
TR30A/WL 0.4 6.7 30/40 66 1 1/2″ 7 50 1650*1180*1505(A)
15.4) optimized design, large rotor, low rotary speed (within 3000r/min), without the gearbox.

direct connection drive, it has a lower rotary speed and longer life compared with dry oil-free screw air compressor(10000r/min-20000r/min).

12. Automatic Cleaning System

The function of automatic water exchange and automatic system cleaning can be realized, and the interior of the compressor is more clean and sanitary.
 

Introduction

Company Information

Package Delivery

 

BACK HOME

Lubrication Style: Oil-free
Cooling System: Water Cooling
Power Source: AC Power
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Single Screw Compressor
Samples:
US$ 9500/set(s)
1 set(s)(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Water-Lubricated Air Compressors Contribute to Energy Savings?

Water-lubricated air compressors can contribute to energy savings in several ways, making them an attractive option for industries looking to optimize their energy consumption. Here are the key ways in which water-lubricated compressors help achieve energy efficiency:

  1. Reduced friction and improved efficiency: Water serves as a lubricant in water-lubricated compressors, creating a thin film between moving parts to reduce friction. This reduces the energy losses due to mechanical friction and improves the overall efficiency of the compressor. Compared to oil-lubricated compressors, water-lubricated models can achieve higher mechanical efficiency, translating into energy savings over the compressor’s operational lifetime.
  2. Elimination of oil vapor carryover: Oil-lubricated compressors require oil filtration systems to prevent oil carryover into the compressed air stream. These filtration systems consume energy and can introduce pressure drops. In contrast, water-lubricated compressors eliminate the need for oil filtration, reducing energy consumption associated with filtration equipment and minimizing pressure losses. This leads to improved system efficiency and energy savings.
  3. Improved heat transfer and cooling: Water-lubricated compressors offer enhanced heat transfer capabilities compared to oil-lubricated counterparts. Water has a higher specific heat capacity and thermal conductivity, allowing for more efficient heat dissipation. This results in lower operating temperatures and reduces the energy required for cooling the compressor. By optimizing heat transfer, water-lubricated compressors can minimize energy consumption associated with cooling systems or air conditioning in compressor rooms.
  4. Optimized system design: Water-lubricated compressors often employ advanced system designs that further enhance energy efficiency. For example, they may incorporate variable speed drive (VSD) technology, which adjusts the compressor’s speed and power consumption based on the actual air demand. This eliminates energy waste associated with constant-speed operation and reduces energy consumption during periods of low compressed air demand. Additionally, water-lubricated compressors may feature optimized internal components and improved air flow dynamics, resulting in reduced energy losses and improved overall system efficiency.
  5. Heat recovery opportunities: Water-lubricated compressors can provide opportunities for heat recovery. The heat generated during compression can be captured and utilized for various heating applications within the facility, such as space heating, water heating, or process heating. By harnessing this waste heat, water-lubricated compressors contribute to energy savings by offsetting the need for additional energy sources for heating purposes.

By combining these energy-saving features, water-lubricated air compressors help optimize energy consumption, reduce operational costs, and minimize the environmental impact associated with compressed air systems. Implementing water-lubricated compressors with a comprehensive energy management strategy can result in significant energy savings and improved overall sustainability for industrial operations.

air compressor

Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?

When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:

Water Quality:

  • Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
  • Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.

Water Temperature:

  • Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
  • Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.

Water Treatment:

  • Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
  • Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.

Manufacturer Recommendations:

  • Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.

By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.

air compressor

Are Water Lubrication Air Compressors More Environmentally Friendly?

Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:

  1. Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
  2. Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
  3. Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
  4. Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
  5. Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.

Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.

China OEM Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr30A/W 30kw   with Hot sellingChina OEM Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr30A/W 30kw   with Hot selling
editor by CX 2023-11-17

China manufacturer 8bar/1500W*2 Oil-Free Energy-Saving Compressors Portable Piston Air Compressor Top Quality Direct Driven Reciprocating Compressor best air compressor

Product Description

Product Description

MODEL TL5710012 TL5710571 TL57150036 TL57150045//TL5715050 TL57155710 TL57150170
INPUT POWER 900W 900W 1500W 900W*2/1500W*2 1500W*3 1500W*4
RATED/VOLTAGE 200-240V/50HZ 200-240V/50HZ 200-240V/50HZ 200-240V/50HZ 200-240V/50HZ 200-240V/50HZ
RATED SPEED 1450PRM 1450PRM 1450PRM 1450PRM 1450PRM 1450PRM
WORK PRESSURE 8BAR/116PSI 8BAR/116PSI 8BAR/116PSI 8BAR/116PSI 8BAR/116PSI 8BAR/116PSI
TANK VOLUME 12L/3.0GAL 22L/5.8GAL 36L/9.5GAL 45L/12.0GAL
50L/13.0GAL
100L/26.4GAL 170L/45.0GAL
AIR DISPLACEMENT 5.9CFM/166L/MIN 5.9CFM/166L/MIN 8.6CFM/243L/MIN 11.8CFM/332L/MIN
17.2CFM/486L/MIN 
25.8CFM/729L/MIN 34.4CFM/972L/MIN

Company Information

FAQ

Package Delivery

Click Here For More Products
 

Lubrication Style: Oil-free
Cooling System: Air Cooling
Structure Type: Open Type
Compress Level: Single-Stage
After Warranty Service: Video Support, Online Support, Spare Parts
After-Sales Service: Online Support
Samples:
US$ 197/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Role of Water Separators in Water-Lubricated Compressors?

In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:

Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.

The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:

  1. Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
  2. Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
  3. Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
  4. Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.

By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.

It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.

air compressor

Are There Regulations Governing the Use of Water-Lubricated Air Compressors?

When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:

1. Occupational Safety and Health Administration (OSHA) Regulations:

OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.

2. Environmental Protection Agency (EPA) Regulations:

The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.

3. International Organization for Standardization (ISO) Standards:

The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.

4. Manufacturer Guidelines and Recommendations:

In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.

It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.

By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.

air compressor

Are Water Lubrication Air Compressors More Environmentally Friendly?

Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:

  1. Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
  2. Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
  3. Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
  4. Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
  5. Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.

Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.

China manufacturer 8bar/1500W*2 Oil-Free Energy-Saving Compressors Portable Piston Air Compressor Top Quality Direct Driven Reciprocating Compressor   best air compressorChina manufacturer 8bar/1500W*2 Oil-Free Energy-Saving Compressors Portable Piston Air Compressor Top Quality Direct Driven Reciprocating Compressor   best air compressor
editor by CX 2023-11-17

China wholesaler Hf15/13 (H) 132kw Permanent Magnet Motor VSD Screw Air Compressor air compressor for sale

Product Description

Product Description    

Application

Hanfa group through the continuous pursuit of technological innovation, to meet the needs of market development, in the original mobile screw air compressor series is developed on the basis of smaller size, the layout more reasonable, more cost-effective new mobile screw series. Comprehensive performance is good, the more efficient is widely used in drilling, pipeline pressure test and related fields.For cold area can also be optional liquid fuel oil heater, through the pulmonary circulation cooling heating cylinder diesel engine, thus allowing you to start.

Features

1.High reliability

All the main parts and components are made by CHINAMFG enterprises at home and abroad with reliable quality. Pressure, force constant, flow stable; Realize the displacement from 0 to 100% T continued from section II, high efficiency, energy saving, stable and reliable;

2.Convenience

Small volume, light weight, low noise;Compact, easy to transport, covers an area of less, also can enter in narrow condition, out freely, reduce transportation costs.All the door design, ensure the wide operation space, convenient maintenance and repair. To save time, improve efficiency.

3.To adapt to the environment

This air compressor to ensure that the cold temperature, oxygen condition can also be a perfect start, satisfy the bearing and all kinds of bad working condition of using the environment. For customers to solve the has the worry, greatly improve the work efficiency.

4.Comprehensive monitoring

Equipment running state can be comprehensive monitoring;Control panel, in both Chinese and English interface is concise, clear, equipment running status be clear at a glance, the operation is convenient, and equipped with automatic stop function with regard to the guarantee the safety of person, machine.
Technical Data

name HF15(H) HF13(H)
compressor Displacement 12(m/min) 15(m/min)
  Exhaust pressure 12(bar) 13(bar)
  Compression level Single-stage Single-stage
  Gas tank volume 120(bar) 130(bar)
  Screw oil quantity 60(l) 65(l)

diesel engine

Engine manufacturer Xihu (West Lake) Dis.feng Cummins Xihu (West Lake) Dis.feng Cummins
  engine model 6BTA5.9-C180 6BTA5.9-C180
  Number of cylinders 6 6
  rated power 132(kw) 132(kw)
  Rated speed 2200(rpm) 2200(rpm)
  Idling speed 1400(rpm) 1400(rpm)
  Diesel engine lubricants 18(l) 18(l)
  Coolant volume 40(l) 40(l)
  Fuel tank volume 335(l) 335(l)

unit

Battery 6-QW-135MF*2 6-QW-135MF*2
  Connection size 1-G2″,1-G1″, 1-G2″,1-G1″,
  transfer method Coupling direct coupling Coupling direct coupling
  long 4200(mm) 4200(mm)
  width 1980(mm) 1980(mm)
  high 2210(mm) 2210(mm)
  Total Weight 2700(kg) 2700(kg)
  Unit walking mode Two rounds of movement Two rounds of movement

Working Site

Company Introduction
Hanfa Group established in 1998 is a key enterprise in the industry of geological exploration and water well field, with the ability to research,manufacture and market. Now, the Group pursues high standard manufacturing and qualified products. It has more than 20 species such as water well drilling rig, core drilling rig, engineering drilling rig, DTH drilling rig, horizontaldirectional drilling rig, etc. These machines are mainly used in geological prospecting, exploration of railway and highway engineering, mining, SPT, water well, geothermal well etc. Some of them won the Scientific and Technical Advance Prize or the National Scientific Research Achievement Prize. All the products have passed the quality system certification of ISO9001:2000 and are national inspection-free products.


1. More than 30 years of experience 
The factory is located in ZheJiang Province, China. We are very welcome to visit our factory. If
you need it, we will arrange a pick-up.
2.Top production team 
The transportation and packaging will be packaged in international standards. If you have special packaging requirements, we will give you the most suitable solution.
3.Our Service 
– New machine provides technical trair.
– Once anything goes wrong with the machine by normal using, our technical person must appear at the first time no matter where you are.
– When the machine should be maintained, you will receive the reminding from us.
– According to different geological conditions, we will recommend different construction plans for you
– Remind you which are wearing parts, so you can prepare enough.
– 24 hours respond to your quality problem.

FAQ
1,Are you trading company or manufacturer?

We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.

2,Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.

3,How about your machine quality? 
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.

4,Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.

5,What about the qaulity warranty? 
We offer one-year quality warranty for machines’ main body.

6,How long can you deliver the machine? 
Generally, we can deliver the machine in 7 days.

Our Customers

 

Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Samples:
US$ 15000/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China wholesaler Hf15/13 (H) 132kw Permanent Magnet Motor VSD Screw Air Compressor   air compressor for saleChina wholesaler Hf15/13 (H) 132kw Permanent Magnet Motor VSD Screw Air Compressor   air compressor for sale
editor by CX 2023-11-17

China high quality Medical Clinic Hospital Portable Cart Dental Turbine Unit Built-in Air Compressor Teeth Therapy Equipment 12v air compressor

Product Description

Medical Clinic Hospital Portable Cart Dental Turbine Unit Built-in Air Compressor Teeth Therapy Equipment
CCD-P211

Mobile Dental Delivery System’s main applications are for oral heath and treatment. 
It is a indoor operation unit, with multi-functions as mobile dental unit, storage cabinet and instrument tray. Instrument tray at the top of unit, it is removable design, you may replace or clean it conveniently. The self-contained 6 drawers, keep CHINAMFG storage space for instruments and drug. 
Universal wheels with brake, on the unit here is fashionable handle, you may move or fix the unit freely on the ground. Rectangular shape on the back side of unit, make the best use of corner space, save your clinic area. With built-in dental air compressor and tank, with same function as the integrated dental chair. 

Specification: 
Volt./Hz: 110~240V 50/60Hz 
Power: 600W 
Air Flow: 118L/min at 0Bar 
Working Pressure: 0-0.6Mpa 
Working Noise: 42dB 
Net Weight: 66kg 
Gross Weight: 76kg 
Product Size: 67x57x85cm (LxWxH) 

Standard Accessories: 
Movable Dental Cabinet 1set 
Storage Drawers 6pcs 
Removable Instrument Tray 1pc 
Dental Silent Air Compressor 1set 
Saliva Ejector 1pc 
High and Low speed Handpiece Tubing 1pc each 
3-Way Syringe 1pc 
Clean Water Supply System 1set 
Drainage System 1set 
Foot Control 2pcs 

Options: 
Handpiece 
Fiber Optic Handpiece 
Handpiece with LED generator 
High Volume Suction 
Dental Prophy Mate 
LED Curing Light 
Ultrasonic Scaler 
Micro Motor 
Oral Lighting System with suction kit 
Foldable Patient Chair 
Foldable Dentist Stool 
Dentist Saddle Stool 
Moveable LED Operation Light 
 

 

We CONCERNMED make one-stop shopping hospital medical equipment:

Dental Equipment   Dental Chair
Dental Class B Autoclave
Dental Intra-Oral Camera
Dental Compressor
Dental Handpiece
Dental Ultrasonic Scaler
Dental Cabinet
Dental Instrument Washer
Others Dental Equipment

 

Interface: Optional
Teeth Whitening Method: Optional
Applicable Departments: Oral Surgery
Certification: ISO, CE
Type: Dental Unit
Material: Steel

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China high quality Medical Clinic Hospital Portable Cart Dental Turbine Unit Built-in Air Compressor Teeth Therapy Equipment   12v air compressorChina high quality Medical Clinic Hospital Portable Cart Dental Turbine Unit Built-in Air Compressor Teeth Therapy Equipment   12v air compressor
editor by CX 2023-11-16

China Good quality Hot Sale High Purity Natural Gas Generator Compressor for Gas Reinjection best air compressor

Product Description

Oil Free CH4/O2/N2/CNG/CO2/CFCs/He/SF6/Ar/H2 Compressor Booster:

Product Description

Our factory produced many kinds of oil free compressor, inlcuding oil free oxygen compressor, oil free gas compressor, including air, nitrogen gas, hydrogen gas, natural gas, Argon gas, helium gas, Sf6 gas ects more than 30 kinds of gas medium,max pressure up to 40Mpa.

 

A natural gas compressor is a mechanical device designed to increase the pressure of natural gas, enabling its efficient transportation and storage. Compressors are vital components in the natural gas industry, facilitating the movement of gas across pipelines and ensuring a reliable supply to end users.

 

Natural gas compressors offer several advantages. Firstly, they enhance gas transmission efficiency by increasing the pressure, allowing for the transportation of larger volumes over long distances. This helps to optimize the utilization of existing pipelines and infrastructure.

 

Secondly, natural gas compressors contribute to reduced energy consumption. By compressing the gas, its density increases, which leads to lower energy requirements during transportation. This translates into cost savings and a more environmentally friendly operation.

 

Additionally, natural gas compressors play a crucial role in maintaining safety within the industry. They help prevent gas leaks by maintaining the pressure at optimal levels, reducing the risk of accidents and ensuring the protection of personnel and infrastructure.

 

These compressors find extensive applications in various sectors. They are commonly used in gas pipelines to maintain the required pressure levels for efficient gas transportation. Natural gas processing plants employ compressors to handle gas during different stages of production, including compression for storage and distribution. Storage facilities also utilize compressors to increase the pressure of gas for effective storage and withdrawal.

 

In summary, natural gas compressors are indispensable in the natural gas industry. They offer advantages such as efficient gas transmission, reduced energy consumption, and improved safety. With their wide range of applications, these compressors enable the reliable and efficient utilization of natural gas as a clean and versatile energy source.

Hydrogen compressors are commonly used in applications such as:

1. Gas Pipelines: Natural gas compressors are essential for maintaining the required pressure levels in gas pipelines. They enable the efficient transmission of natural gas over long distances, ensuring a steady flow and maximizing pipeline capacity.

2. Natural Gas Processing Plants: Compressors play a vital role in natural gas processing plants. They are used during different stages of production, including compression for storage, transportation, and distribution. Compressors help maintain the optimal pressure required for various processes, ensuring smooth operations and efficient handling of the gas.

3. Storage Facilities: Natural gas compressors are employed in storage facilities to increase the pressure of gas during storage and withdrawal. They facilitate effective storage capacity by compressing the gas, allowing for greater volume to be stored within the available space.

4. LNG Terminals: Compressors are crucial components in liquefied natural gas (LNG) terminals. They assist in the re-gasification process, where LNG is converted back into its gaseous form for distribution. Compressors help increase the pressure and temperature of the gas, making it suitable for transportation through pipelines.

5. Industrial Applications: Natural gas compressors are used in various industrial applications where high-pressure gas is required. They are utilized in sectors such as manufacturing, power generation, chemical plants, and refineries. Compressors ensure a reliable supply of compressed natural gas for process heating, power generation, and other industrial operations.

6. CNG Refueling Stations: Compressors play a critical role in compressed natural gas (CNG) refueling stations. They compress natural gas to high pressures required for fueling vehicles running on CNG. Compressors at refueling stations ensure a rapid and efficient refueling process, enabling the widespread adoption of CNG as a transportation fuel.

Product Parameters

Output

 

Nm³/h

Rated

Inlet Pressure 

Mpa

Rated 

Outlet Pressure 

Mpa

Rated Power

KW

Volume Flow Of The 

Matched CO2 Generator 

Nm³/h

Cooling Type
3~5 0.3~0.7 1~20 4.0 3-5 Wind
8~12 0.3~0.7 1~20 5.5~7.5 8-12 Wind
15~16 0.3~0.7 1~20 11 15-16 Wind
20 0.3~0.7 1~20 15 20 Wind
24~25 0.3~0.7 1~20 15 24-25 Wind
30 0.3~0.7 1~20 15 30 Water
40 0.3~0.7 1~20 15 40 Water
50 0.3~0.7 1~20 18.5 50 Water
60~70 0.3~0.7 1~20 22 60-70 Water
80~90 0.3~0.7 1~20 15×2 80-90 Water
110~130 0.3~0.7 1~20 22×2 110-130 Water
150 0.3~0.7 1~20 22×2 150 Water
The inlet pressure of the oil-free oxygen booster can be between 0-1.0MPa, and the outlet pressure can reach up to 20Mpa. It is suitable for various output and can be customized according to the specific requirements of customers.

Selection Xihu (West Lake) Dis.

Selection principle of oil-free booster (Oxygen and nitrogen as examples)
1. Working conditions: Compressed medium; Inlet pressure; Exhaust pressure; Exhaust volume (Sometimes referring to the production volume of oxygen generator and nitrogen generator)
2. Determine the compressor model according to the working conditions
3. Common sense description
    Nm³/h is m³ of exhaust gas per hour under standard conditions; Nm³/min is m³ of exhaust gas per minute under standard conditions
    1bar=0.1Mpa≈1kgf
    The relationship between the flow rate in the pressure state and the flow rate in the standard state: the flow rate in the standard state = the flow rate in the pressure state × (fluid pressure + atmospheric pressure), the atmospheric pressure is usually 1 bar.

 

Product Advantages

1. Superior Efficiency: Our compressor is engineered with advanced technology to deliver exceptional efficiency. It maximizes gas transmission rates, allowing for the transportation of larger volumes over longer distances. This optimizes pipeline capacity and minimizes energy losses, resulting in cost savings and enhanced operational productivity.

 

2. Energy Optimization: We prioritize energy efficiency in our compressor design. By compressing the gas and increasing its density, our compressor significantly reduces energy consumption during transportation. This not only lowers operational costs but also aligns with sustainability goals by minimizing carbon emissions and promoting environmental stewardship.

 

3. Enhanced Safety Features: Safety is paramount in our compressor design. We have implemented robust safety features to mitigate the risk of gas leaks and ensure personnel and infrastructure protection. Our compressor maintains optimal pressure levels and incorporates advanced monitoring systems for reliable and secure operation.

 

4. Versatile Application: Our compressor is designed to meet diverse industry needs. It finds application across various sectors, including gas pipelines, natural gas processing plants, storage facilities, LNG terminals, and industrial settings. Its versatility allows for seamless integration into different operations, making it a reliable solution for a wide range of applications.

 

5. Reliability and Durability: We prioritize quality and reliability in our compressor manufacturing. Our products are built to withstand demanding operating conditions and deliver consistent performance over an extended lifespan. With proper maintenance, our compressor ensures reliable operation, minimizing downtime and maximizing productivity.

 

6. Customization and Adaptability: We understand that different projects have unique requirements. Our compressors offer flexibility and customization options to meet specific project needs. We work closely with our customers to provide tailored solutions, ensuring optimal performance and compatibility with existing infrastructure.

 

Customizable Technical Parameters: For more detailed technical specifications and additional requirements specific to your needs, please contact us. We offer a range of oil-free Natural gas compressors with varying capabilities and features to cater to diverse application demands.

Product Show

 

Project Case

After-sales Service: Online Support, Video Technical Support
Warranty: 12 Months
Lubrication Style: Oil-free
Samples:
US$ 6500/Unit
1 Unit(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can Water-Lubricated Air Compressors Be Used in Cold Climates?

Water-lubricated air compressors can be used in cold climates, but there are certain considerations and precautions to keep in mind. Here’s a detailed explanation of using water-lubricated air compressors in cold climates:

Freezing of Water:

  • Potential for Freezing: In cold climates, the water used for lubrication in water-lubricated compressors can freeze, which can cause operational issues and damage to the equipment. Freezing can occur in the water supply lines, lubrication system, or water jackets if the temperature drops below the freezing point of water.
  • Water Temperature: It is important to ensure that the water temperature remains above freezing throughout the compressor system. This can be achieved by using insulation, heat tracing, or heaters to maintain adequate water temperature. Monitoring the water temperature and implementing appropriate heating measures are crucial to prevent freezing-related problems.

Protection and Insulation:

  • Protecting External Components: External components of water-lubricated compressors, such as valves, fittings, and pipes, may be exposed to cold temperatures. Insulating these components can help prevent freezing and ensure their proper functioning. Insulation materials, such as foam wraps or heat tapes, can be used to provide thermal protection.
  • Water Supply Lines: Water supply lines that feed the compressor should be properly insulated and protected from freezing temperatures. Insulation can help maintain the water temperature and prevent freezing within the supply lines. Additionally, measures such as burying the supply lines below the frost line or using heat tracing cables can offer further protection against freezing.

Alternative Lubrication Methods:

  • Oil-Lubricated Compressors: In extremely cold climates, where freezing is a significant concern, using oil-lubricated compressors instead of water-lubricated ones may be a more practical option. Oil-based lubrication systems are less prone to freezing and can provide reliable operation in colder temperatures. However, it is important to consider the specific requirements and limitations of oil-lubricated compressors for the intended application.

Manufacturer Recommendations:

  • Consulting the Manufacturer: It is crucial to consult the manufacturer’s guidelines and recommendations regarding the use of water-lubricated compressors in cold climates. Manufacturers may provide specific instructions, modifications, or alternative solutions to ensure the safe and efficient operation of their equipment under cold weather conditions.

By implementing proper insulation, heating measures, and following the manufacturer’s guidance, water-lubricated air compressors can be used effectively in cold climates. It is important to assess the specific requirements of the application and consider the potential challenges associated with freezing temperatures to ensure the reliable and safe operation of the water-lubricated compressor system.

air compressor

Are There Any Potential Water-Related Issues with These Compressors?

Yes, there are potential water-related issues that can arise with water-lubricated compressors. Here’s a detailed explanation of some of the common water-related issues associated with these compressors:

Corrosion:

  • Internal Corrosion: Water-lubricated compressors are susceptible to internal corrosion due to the presence of water within the system. If the water used is not properly treated or if corrosion prevention measures are insufficient, the internal components of the compressor can corrode over time. Corrosion can lead to reduced performance, component damage, and the potential for leaks or system failures.
  • External Corrosion: External components such as piping, valves, and fittings can also be affected by corrosion if exposed to water and moisture. Corrosion on these external surfaces can lead to compromised integrity, leaks, and reduced system efficiency.

Water Quality:

  • Water Contaminants: The quality of the water used in water-lubricated compressors is crucial. If the water contains contaminants such as sediment, debris, oil, or chemicals, it can negatively impact the performance and reliability of the compressor. Contaminants can cause blockages, clogging, increased wear on components, reduced lubrication effectiveness, and potential damage to the compressor.
  • Water Hardness: Water hardness, characterized by high mineral content, can lead to scaling and deposits within the compressor and associated components. Scaling can restrict flow, impede heat transfer, and reduce the efficiency of the compressor. It can also contribute to fouling and corrosion issues.

Water Treatment and Filtration:

  • Inadequate Water Treatment: Insufficient or improper water treatment can lead to various issues. If the water is not adequately treated for contaminants, hardness, or pH levels, it can result in accelerated corrosion, scaling, fouling, and reduced lubrication effectiveness. Inadequate water treatment can also contribute to increased maintenance requirements and decreased overall compressor performance.
  • Filtration System Issues: Filtration systems play a crucial role in removing contaminants from the water. However, if the filtration system is not properly maintained, filters become clogged or damaged, or if there are design or installation issues, it can lead to inadequate filtration and compromised water quality. This can result in the accumulation of contaminants, reduced lubrication performance, and potential damage to the compressor.

Water Supply and Availability:

  • Insufficient Water Supply: Water-lubricated compressors rely on a consistent and reliable water supply. If the water supply is insufficient in terms of flow rate, pressure, or quality, it can impact the compressor’s operation and performance. Inadequate water supply can lead to inadequate lubrication, reduced cooling capacity, and increased wear on components.
  • Water Source Availability: The availability of a suitable water source is essential for water-lubricated compressors. In certain locations or applications, accessing clean water or meeting specific water quality requirements may pose challenges. Lack of a suitable water source can limit the feasibility or effectiveness of using water-lubricated compressors.

It is important to address these potential water-related issues by implementing proper water treatment, corrosion prevention measures, regular maintenance of filtration systems, and monitoring of water quality. Adhering to manufacturer guidelines, performing regular inspections, and taking proactive measures can help mitigate these issues and ensure the reliable and efficient operation of water-lubricated compressors.

air compressor

Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?

Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:

  1. Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
  2. Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
  3. Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
  4. Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
  5. Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
  6. Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.

Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.

China Good quality Hot Sale High Purity Natural Gas Generator Compressor for Gas Reinjection   best air compressorChina Good quality Hot Sale High Purity Natural Gas Generator Compressor for Gas Reinjection   best air compressor
editor by CX 2023-11-16

China best CHINAMFG Rand Oil Free Screw Air Compressor 350-VSD supplier

Product Description

 

Ingersoll Rand Oil Free Screw Air Compressor
Model: 350-VSD
 

 

Ingersoll Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands-including Club Car , CHINAMFG Rand , CHINAMFG King and Trane -work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a $13 billion global business committed to a world of sustainable progress and enduring results.
Ingersoll Rand, IR, the IR logo, PAC software, V-Shield and Ultra Coolant are trademarks of CHINAMFG Rand, its subsidiaries and/or affiliates. All other trademarks are the property of their respective owners. CHINAMFG Rand compressors are not designed, intended or approved for breathing air applications. CHINAMFG Rand does not approve specialised equipment for breathing air applications and assumes no responsibility or liability for compressors used for breathing air service. Nothing contained on these pages is intended to extend any warranty or representation, expressed or implied, regarding the product described herein. Any such warranties or other terms and conditions of sale of products shall be in accordance with CHINAMFG Rand’s standard terms and conditions of sale for such products, which are available CHINAMFG request. Product improvement is a continuing goal at CHINAMFG Rand. Any designs, diagrams, pictures, photographs and specifications contained within this document are for representative purposes only and may include optional scope and/or functionality and are subject to change without notice or obligation.

Our company’s purpose – to help make life better by relying on us – and the set of values that define us are the foundation of our company’s culture and success. We think and act like owners, taking responsibility for our own actions and always striving to care for our neighbors and create a brighter, healthier shared planet for everyone. We are committed to the success of our customers. Our goal is to operate with clarity and straightforwardness, building lifelong, ongoing and meaningful connections with our customers.

We are driven by a spirit of action and an entrepreneurial spirit of innovation and progress; we accept and embrace the many challenges that come with such responsibility. We speak honestly, admit mistakes, and always strive for openness and clarity. We have bold ambitions while moving CHINAMFG with humility and integrity, striving to earn trust every day. We have the expertise and experience to solve the toughest problems, but no matter how difficult the challenge, we are always sincere and humble. We are committed to fostering team innovation and cultivating and celebrating a culture that embraces diverse opinions, backgrounds and experiences. Employees who are driven by our purpose and values are an unstoppable force that strengthens our ability to deliver benefits to our stakeholders and ensure the long-term health and safety of our company.
Bestrand is a leading supplier of compressed air system. Past 10 years, we established very good partnership with CHINAMFG Rand. We have provided all kinds of products from CHINAMFG Rand include air compressor, after treatment, spare parts to customers all over the world. Pls feel free to contact us for a quote. 

 

Lubrication Style: Lubricated
Cooling System: Air Cooling or Water Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

How Do Water-Lubricated Air Compressors Contribute to Energy Savings?

Water-lubricated air compressors can contribute to energy savings in several ways, making them an attractive option for industries looking to optimize their energy consumption. Here are the key ways in which water-lubricated compressors help achieve energy efficiency:

  1. Reduced friction and improved efficiency: Water serves as a lubricant in water-lubricated compressors, creating a thin film between moving parts to reduce friction. This reduces the energy losses due to mechanical friction and improves the overall efficiency of the compressor. Compared to oil-lubricated compressors, water-lubricated models can achieve higher mechanical efficiency, translating into energy savings over the compressor’s operational lifetime.
  2. Elimination of oil vapor carryover: Oil-lubricated compressors require oil filtration systems to prevent oil carryover into the compressed air stream. These filtration systems consume energy and can introduce pressure drops. In contrast, water-lubricated compressors eliminate the need for oil filtration, reducing energy consumption associated with filtration equipment and minimizing pressure losses. This leads to improved system efficiency and energy savings.
  3. Improved heat transfer and cooling: Water-lubricated compressors offer enhanced heat transfer capabilities compared to oil-lubricated counterparts. Water has a higher specific heat capacity and thermal conductivity, allowing for more efficient heat dissipation. This results in lower operating temperatures and reduces the energy required for cooling the compressor. By optimizing heat transfer, water-lubricated compressors can minimize energy consumption associated with cooling systems or air conditioning in compressor rooms.
  4. Optimized system design: Water-lubricated compressors often employ advanced system designs that further enhance energy efficiency. For example, they may incorporate variable speed drive (VSD) technology, which adjusts the compressor’s speed and power consumption based on the actual air demand. This eliminates energy waste associated with constant-speed operation and reduces energy consumption during periods of low compressed air demand. Additionally, water-lubricated compressors may feature optimized internal components and improved air flow dynamics, resulting in reduced energy losses and improved overall system efficiency.
  5. Heat recovery opportunities: Water-lubricated compressors can provide opportunities for heat recovery. The heat generated during compression can be captured and utilized for various heating applications within the facility, such as space heating, water heating, or process heating. By harnessing this waste heat, water-lubricated compressors contribute to energy savings by offsetting the need for additional energy sources for heating purposes.

By combining these energy-saving features, water-lubricated air compressors help optimize energy consumption, reduce operational costs, and minimize the environmental impact associated with compressed air systems. Implementing water-lubricated compressors with a comprehensive energy management strategy can result in significant energy savings and improved overall sustainability for industrial operations.

air compressor

What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?

When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:

Operating Environment:

  • Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
  • Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.

Maintenance and Service:

  • Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
  • Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.

Environmental Impact:

  • Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
  • Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.

Application-Specific Factors:

  • Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
  • Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.

Cost Considerations:

  • Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
  • Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.

By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.

air compressor

Are There Any Downsides to Using Water-Lubricated Air Compressors?

While water-lubricated air compressors offer several advantages, there are also some downsides to consider when using this type of compressor. Here are a few potential drawbacks associated with water-lubricated air compressors:

  1. Water quality requirements: Water-lubricated compressors are highly dependent on the quality of the water used for lubrication. The water should be free from contaminants, minerals, and impurities that can affect the compressor’s performance or cause corrosion. Ensuring the consistent availability of high-quality water may require additional filtration or treatment processes, which can add complexity and cost to the system.
  2. Increased maintenance: Compared to oil-lubricated compressors, water-lubricated models may require more frequent maintenance. Regular checks, cleaning, and monitoring of the water system are necessary to prevent blockages, maintain proper water flow, and ensure the cleanliness of the compressor. This increased maintenance requirement can result in higher operational costs and more downtime for maintenance activities.
  3. Potential for corrosion: While water itself is not corrosive, certain water conditions, such as high mineral content or low pH levels, can promote corrosion within the compressor system. Corrosion can lead to component damage, reduced efficiency, and the need for repairs or replacements. Implementing corrosion prevention measures, such as water treatment or the use of corrosion-resistant materials, may be necessary to mitigate this risk.
  4. Compatibility limitations: Water-lubricated compressors may have limitations when it comes to compatibility with certain materials or gases. For example, in applications where the compressed air comes into contact with sensitive materials or requires specific gas purity, the use of water as a lubricant may not be suitable. In such cases, alternative lubrication methods or compressor types may be more appropriate.
  5. Environmental considerations: While water is generally considered environmentally friendly, the disposal of used water from the compressor system may require proper wastewater management. Depending on local regulations and requirements, additional steps may be needed to ensure compliant and environmentally responsible disposal of the water used for lubrication.

Despite these potential downsides, water-lubricated air compressors continue to be used in various industries and applications due to their specific advantages and suitability for certain environments. It is important to carefully evaluate the specific requirements, operating conditions, and maintenance considerations of a given application to determine whether a water-lubricated compressor is the most suitable choice.

China best CHINAMFG Rand Oil Free Screw Air Compressor 350-VSD   supplier China best CHINAMFG Rand Oil Free Screw Air Compressor 350-VSD   supplier
editor by CX 2023-11-16

China Best Sales Factory Wholesale China Supplier Oil Free Air Compressor with CE air compressor oil

Product Description

Product Description

Oil Free Piston Compressor 
Oil-free technology, the packing parts should be oil-free lubrication, because this ensures the purity of the medium when it works. Crankshaft, connecting rod and crosshead parts are splash lubricated, so as to ensure the reliability of movement and ensure the cleanliness of gas. The vertical double-cylinder structure is adopted, which makes the whole machine smaller in volume, more compact and reasonable in structure, and has the characteristics of small volume, light weight, stable operation, low noise, simple structure, convenient operation, safety and reliability, selling well in China, and exported to Russia, Southeast Asia, South America and Switzerland…

Product Parameters

Specifications
Medium gas mixture Quantity 1
inlet pressure      1bar Inlet temperature ºC 20
Discharge pressure     7bar    
Volume flow    Nm3/h 100 Exhaust temperature (after cooling)ºC ≤100
Model ZW-0.9/1-7 Compressed series 2
Type Z Cylinders quantity 2
    Piston stroke       mm  
speed of crankshaft     r/min 740 Voltage V 380
Cooling-down By water transmission Direct-drive
Shaft power     KW 11 Motor speed     r/min 720
Motor YBX3-180L-8  BIIBT4
Dimension mmXmmXmm 2000*1300*1200mm Unit weight    1100KG
lubricating system Crankshaft connecting rod  crosshead Oil lubrication
  Cylinder and filler Oil-free
Material of the contact with the gas Cylinder cover, pipeline 3Cr13
Fuselage and crankshaft HT250 ,45
valve stainless steel
Supply of material scope compressor main engine
explosion-proof motor 1.
water cooler
inlet gas-liquid separator
safety valve
shared chassis
belts
pipeline components
random spare parts
anchor bolts
technical documents
Oil removal filter
Non-explosion proof control cabinet

 

Company Profile

HangZhou CHINAMFG Industry Co.,Ltd covers an area of nearly 30,000 square meters, plant area of 20,000 square meters, with more than 50 sets of sophisticated equipment, the current annual output of 500 sets of compressor, the production scale in the industry in the international leading, with hydrogenfilling and hydrogenation station compressor delivery ability in1month at the fastest. Compressor products exported to the United States, Russia, India, Australia, Indonesia, Vietnam, Thailand, Singapore, North Korea, South Africa, East Timor, the United Arab Emirates and China ZheJiang and other countries andregions.

Users use live

FAQ

Q1: If you are factory or trade company?
We are manufacturer with more than 20 years.

Q2: What is your delivery time?
We promise 90 days once deposit paid and workshop drawings confirmed. 

Q3: What is your payment terms?
We accept TT and L/C at sight.

Q4: What is your packing ?
Standard export.

Q5: Can you provide OEM design?
Yes, we can, we are factory under ourself R&D team, so custom regulator is welcome.

Q6: What is your MOQ?
Our MOQ is 1pcs.

Q7: What is your advantage with other competitors?
We are factory with excellent equipment and high quality control system, and our factory price is more competitive, fast
shipment with high quality, our service is also best with 24 hours on line for fast reply your requestments.

 

Lubrication Style: Oil-free
Cooling System: Water Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Horizontal
Structure Type: Open Type
Compress Level: Double-Stage
Customization:
Available

|

air compressor

What Are the Key Components of a Water-Lubrication System in Compressors?

A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:

Water Supply:

  • Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
  • Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.

Lubrication System:

  • Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
  • Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
  • Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
  • Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
  • Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.

Control and Monitoring:

  • Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
  • Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
  • Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.

Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.

air compressor

Are There Any Potential Water-Related Issues with These Compressors?

Yes, there are potential water-related issues that can arise with water-lubricated compressors. Here’s a detailed explanation of some of the common water-related issues associated with these compressors:

Corrosion:

  • Internal Corrosion: Water-lubricated compressors are susceptible to internal corrosion due to the presence of water within the system. If the water used is not properly treated or if corrosion prevention measures are insufficient, the internal components of the compressor can corrode over time. Corrosion can lead to reduced performance, component damage, and the potential for leaks or system failures.
  • External Corrosion: External components such as piping, valves, and fittings can also be affected by corrosion if exposed to water and moisture. Corrosion on these external surfaces can lead to compromised integrity, leaks, and reduced system efficiency.

Water Quality:

  • Water Contaminants: The quality of the water used in water-lubricated compressors is crucial. If the water contains contaminants such as sediment, debris, oil, or chemicals, it can negatively impact the performance and reliability of the compressor. Contaminants can cause blockages, clogging, increased wear on components, reduced lubrication effectiveness, and potential damage to the compressor.
  • Water Hardness: Water hardness, characterized by high mineral content, can lead to scaling and deposits within the compressor and associated components. Scaling can restrict flow, impede heat transfer, and reduce the efficiency of the compressor. It can also contribute to fouling and corrosion issues.

Water Treatment and Filtration:

  • Inadequate Water Treatment: Insufficient or improper water treatment can lead to various issues. If the water is not adequately treated for contaminants, hardness, or pH levels, it can result in accelerated corrosion, scaling, fouling, and reduced lubrication effectiveness. Inadequate water treatment can also contribute to increased maintenance requirements and decreased overall compressor performance.
  • Filtration System Issues: Filtration systems play a crucial role in removing contaminants from the water. However, if the filtration system is not properly maintained, filters become clogged or damaged, or if there are design or installation issues, it can lead to inadequate filtration and compromised water quality. This can result in the accumulation of contaminants, reduced lubrication performance, and potential damage to the compressor.

Water Supply and Availability:

  • Insufficient Water Supply: Water-lubricated compressors rely on a consistent and reliable water supply. If the water supply is insufficient in terms of flow rate, pressure, or quality, it can impact the compressor’s operation and performance. Inadequate water supply can lead to inadequate lubrication, reduced cooling capacity, and increased wear on components.
  • Water Source Availability: The availability of a suitable water source is essential for water-lubricated compressors. In certain locations or applications, accessing clean water or meeting specific water quality requirements may pose challenges. Lack of a suitable water source can limit the feasibility or effectiveness of using water-lubricated compressors.

It is important to address these potential water-related issues by implementing proper water treatment, corrosion prevention measures, regular maintenance of filtration systems, and monitoring of water quality. Adhering to manufacturer guidelines, performing regular inspections, and taking proactive measures can help mitigate these issues and ensure the reliable and efficient operation of water-lubricated compressors.

air compressor

Can Water-Lubricated Air Compressors Be Used in Medical Applications?

Water-lubricated air compressors can be used in certain medical applications, offering specific advantages for these environments. Here are some considerations regarding the use of water-lubricated air compressors in medical settings:

  1. Clean and sterile lubrication: Water is a clean and sterile lubricant, making it suitable for medical applications where maintaining a sterile environment is crucial. Water lubrication helps prevent contamination and ensures the integrity of medical products and procedures.
  2. Reduced risk of oil contamination: Oil-lubricated compressors pose a risk of oil carryover and oil vapor entering the compressed air system. This can be problematic in medical applications, where oil contamination could impact patient safety or interfere with sensitive medical equipment. Water-lubricated compressors eliminate this risk, providing a reliable and oil-free compressed air source.
  3. Compatibility with medical gases: Water-lubricated air compressors are compatible with medical gases such as oxygen or nitrous oxide. Unlike oil lubricants, water does not react or contaminate these gases, ensuring their purity and safety in medical procedures.
  4. Hygienic and easy to clean: Water lubrication simplifies cleaning procedures in medical environments. It does not leave behind sticky residues or require harsh chemicals for cleaning. Water-lubricated compressors can be easily cleaned and maintained, promoting a hygienic and safe medical facility.
  5. Reduced risk of fire hazards: Water has a higher flash point compared to oil lubricants, making water-lubricated compressors safer in terms of fire hazards. In medical settings, where fire safety is critical, using water as a lubricant can provide added peace of mind.
  6. Environmental friendliness: Water is a non-toxic and environmentally friendly lubricant choice. It does not contribute to air or water pollution, aligning with the sustainability goals of medical facilities.

While water-lubricated air compressors offer several advantages for medical applications, it’s important to note that specific requirements and regulations may vary depending on the type of medical procedure or equipment involved. It is advisable to consult with medical professionals or equipment manufacturers to ensure the suitability and compliance of water-lubricated air compressors for specific medical applications.

China Best Sales Factory Wholesale China Supplier Oil Free Air Compressor with CE   air compressor oilChina Best Sales Factory Wholesale China Supplier Oil Free Air Compressor with CE   air compressor oil
editor by CX 2023-11-16

China best China Best Quality IP23 IP55 Silent Energy Saving 10HP-300HP 220V/415V /480V Voltage Air Cooling OEM Industrial Rotary Screw Air Compressor with CE ISO air compressor portable

Product Description

China Best Quality IP23 IP55 Silent Energy Saving 10HP-300HP 220V/415V /480V Voltage Air Cooling OEM Industrial Rotary Screw Air Compressor with CE ISO
 

Product Description

Screw compressor Saving energy is making money

Hengchaowin rotary screw air compressor used germany technology screw(air end ) ,

The same intake valve designed by CHINAMFG Rand,high Efficient IP54 rated motor,And quoted the high-efficiency inverter fromDenmark.

The air compressor can maintain a stable motor efficiency at any speed, so it is more energy-saving and power-saving.

 Brief Introduction:
Air end: Germany Technology. 30 years designed lifetime.
Motor: Top quality ,IP54 or IP55
Inverter: Danish brand inverter can save 30% energy.
Warranty: 5 years for the air end, and 2 years for the whole compressor. 
Delivery time: 7-15 days. 
After-sales service:we have our professional after-sales technician to instruct the installation of the whole screw air compressor.    
Certificate: CE/ISO9001/ASME
We offer free pipe and valves for installation and installation diagram

Our Advantages

 

Advantage:

1.It adopts the design of large rotor and low speed, and contains 2 independent rotors, which has high efficiency and low noise.
2. The high-frequency flexible inverter can effectively reduce the magnetic field interference generated by the inverter, and the special heat dissipation design can prevent high temperature shutdown in summer.
3.Colorful touch system, intelligent operation, remote monitoring integrated system, convenient and worry-free.

Product Parameters

With a power range of 7.5kw-315kw, our air compressor offers a wide range of options to cater to your specific requirements. Whether you need a smaller 10HP compressor or a larger 300HP model, we have you covered. The voltage can be customized to suit your electrical setup, with options including 220V, 415V, and 480V.

Model 
Modelo
HWV-7A HWV-11A HWV-15A HWV-22A HWV-30A HWV-37A HWV-45A
air flow
flujo de aire
m3/min 1.2 1.1 0.9 0.8 1.65 1.5 1.3 1.1 2.5 2.3 2.1 1.9 3.8 3.6 3.1 2.9 5.3 5 4.3 4 6.7 6.2 5.2 5 7.4 7 6.3 6
cfm 42.372 38.841 31.779 28.248 58.2615 52.965 45.903 38.841 88.275 81.213 74.151 67.089 134.178 127.116 109.461 102.399 187.143 176.55 151.833 141.24 236.577 218.922 183.612 176.55 261.294 247.17 222.453 211.86
working pressure
presión laboral
bar(kg) 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5
psi 102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174
power
poder
KW / HP 7.5kw/
10hp
11kw/
15hp
15kw/
20hp
22kw/
30hp
30kw/
40hp
37kw/
50hp
45kw/
60hp
noise db(A) 62±2 66±2 66±2 68±2 68±2 72±2 72±2
Caliber inch RP 1/2 RP3/4 RP3/4 RP 1 RP 1 RP1 1/2 RP1 1/2
Voltage/Frequency AC 380v/415v/220v/480v   or   50hz/60hz  accpet Customized voltage
Starting mode
Modo de inicio
varibale frequency soft start
lubricant oil liter 5 9 9 18 18 18 20
Shape dimension
(mm)
L 850 1180 1180 1300 1300 1450 1450
W 640 800 800 910 910 910 910
H 880 1210 1210 1290 1290 1290 1290
Weight KG 350 370 370 520 520 720 720

HWV-55A HWV-75A HWV-90A HWV-110A HWV-132A HWV-160A HWV-185A
10 9.6 8 7.6 13 12.6 11 10.5 16 15 13 12.5 21 19.8 17 16.4 24.5 23.2 20 19.4 28.7 27.6 23.5 22.8 32 30.4 27.4 26.8
353.1 338.976 282.48 268.356 459.03 444.906 388.41 370.755 564.96 529.65 459.03 441.375 741.51 699.138 600.27 579.084 865.095 819.192 706.2 685.014 1013.397 974.556 829.785 805.068 1129.92 1073.424 967.494 946.308
7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5 7 8 10 12.5
102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174 102 116 145 174
55kw/
75hp
75kw/
100hp
90kw/
120hp
110kw/
150hp
132kw/
175hp
160kw/
210hp
185kw/
250hp
78±2 78±2 83±2 85±2 85±2 85±2 88±2
 RP2  RP2  RP2  RP2, 1/2  RP2, 1/2  RP2, 1/2  RP2, 1/2
AC 380v/415v/220v/480v   or   50hz/60hz  accpet Customized voltage
varibale frequency soft start
55 65 72 90 90 110 110
1800 1800 2000 2300 2500 2500 3150
1250 1250 1250 1470 1470 1470 1980
1670 1670 1670 1840 1840 1840 2150
1480 1680 1860 2600 2900 3200 3500

 

Company Profile

 

HangZhou CHINAMFG Technology Co., Ltd., founded in 1985, in ZheJiang ,China, It is a professional air compressor manufacturer with 30 years of experience in R&D, manufacturing, marketing and service.

After the technical system reform in 2000, the company introduced German advanced CHINAMFG technology, adhering to the German advanced industrial design concept, rigorous manufacturing technology and comprehensive management. We strictly implement ISO9001 international quality system certification and EU CE standard production machines. The performance and quality of our products have been widely recognized and praised by the market, occupying 30% of China’s market share.
Starting to enter overseas markets in 2571, it currently has agents and after-sales teams in North America, Western Europe, South Africa, East Africa and other regions.

Customer feedback

Providing high-quality machines is our standard, and satisfying every customer is our pursuit. Over the years, we have won unanimous praise from overseas users for our integrity and high-quality product quality

 

Packaging & Shipping

 

The air compressor is guaranteed for 1 year and 5 years for the screw(air end) . Warranty time is calculated from machine leave the factory.
 

FAQ

 

Q1: How long could your air compressor be used?
O: Generally, more than 10 years

Q2: What’s payment term?
O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information

Q3: How about your customer service?
O: 24 hours on-line service available

Q4: How about your after-sales service?
O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available

 

After-sales Service: Support Online and Local Service
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: No
Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China best China Best Quality IP23 IP55 Silent Energy Saving 10HP-300HP 220V/415V /480V Voltage Air Cooling OEM Industrial Rotary Screw Air Compressor with CE ISO   air compressor portableChina best China Best Quality IP23 IP55 Silent Energy Saving 10HP-300HP 220V/415V /480V Voltage Air Cooling OEM Industrial Rotary Screw Air Compressor with CE ISO   air compressor portable
editor by CX 2023-11-16