Product Description
Oxygen Concentrator Air Compressor Industrial Use CE Certificate
Intro
Our Oxygen Concentrator Air Compressor is total oil free, do not use any lubricate oil, and for the cylinder use stainless steel material, piston ring is self-lubricated material, all this guarantee oxygen is clean and no-pollution. Oxygen Concentrator Air Compressor working speed is slow, normally 200-400 rpm, to keep working do 24 hours heavy duty loading.
Normally, according to customer oxygen application condition, our Oxygen Concentrator Air Compressor has1~5 pressure stages, by the cylinder, has 1~4 cylinders.
Advantage
| (1) | Completely 100% oil free, no oil requires. |
| (2) | Oxygen for VPSA PSA and LOX gas source. |
| (3) | No pollution, keep the same purity into the gas. |
| (4) | Top low cost, low maintenance cost, simple operation, just changes the piston ring. |
| (5) | CE approved to meet the requirements of the EU market. |
| (6) | According to the customer’s specific working conditions, the Oxygen Concentrator Air Compressor is designed for single compression, two-stage compression, three-stage compression. |
| (7) | Continuous heavy-duty operation can run stably for 24 hours without stopping. |
| (8) | Water cooling + air cooling double effect heat dissipation. |
| (9) | Equipped with PLC digital display screen and central control chip, the full digital control system is convenient to use and visually display all kinds of data. |
Product Specification
| Model |
Capacity/ Flow Rate |
Inlet Pressure | Discharge Pressure | Power | Weight | Dimension(L*W*H) |
| WWZ-3/4-150 | 3m³/h | 3-4bar | 150bar | 4kw | 140kg | 1080X820X850mm |
| WWZ-5/4-150 | 5m³/h | 3-4bar | 150bar | 5.5kw | 210kg | 1080X820X850mm |
| WWZ-10/4-150 | 10m³/h | 3-4bar | 150bar | 7.5kw | 350kg | 1080X900X850mm |
| WWZ-15/4-150 | 15m³/h | 3-4bar | 150bar | 11kw | 350kg | 1250X1571X850mm |
| WWZ-20/4-150 | 20m³/h | 3-4bar | 150bar | 15kw | 470kg | 1250X1571X850mm |
| WWZ-30/4-150 | 30m³/h | 3-4bar | 150bar | 15kw | 500kg | 1350X1571X900mm |
| WWZ-40/4-150 | 40m³/h | 3-4bar | 150bar | 15kw | 500kg | 1600X1100X1100mm |
| WWZ-50/4-150 | 50m³/h | 3-4bar | 150bar | 15kw | 500kg | 1600X1100X1100mm |
Application Filling Cylinder
Oxygen Concentrator Air Compressor is mainly used for filling oxygen breathing apparatus and compressed oxygen self-rescuer high pressure gas cylinder booster pump. It is the filling of oxygen or other non-combustible gases in the large gas cylinders into another gas storage cylinder. It can control the filling pressure automatically.
It is an Oxygen Concentrator Air Compressor that increases oxygen pressure from source bottle to another gas bottle, let the oxygen pressure of this gas bottle achieve the needed pressure. It is used for pump oxygen, nitrogen and carbon dioxide from source gas bottle and fills in the gas bottle which is waiting for inflating.
Oxygen Concentrator Air Compressor is mainly used for mining, hospital service, is used for filling oxygen respirator, compression oxygen for oxygen tanks, chemical, oil, medical, fire control and other relevant industries.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Supplied, Onsite, Online |
|---|---|
| Warranty: | 18 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Water/Air Cooling |
| Cylinder Arrangement: | Series Arrangement |
| Cylinder Position: | Vertical |
| Samples: |
US$ 8000/Set
1 Set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-01-31