Product Description
HangZhou CHINAMFG Gas Equipment Co.,Ltd, exporting diaphragm compressor, piston compressor, oxygen generator, gas cylinder and nitrogen generators with good quality and low price.
Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.
Co2 Compressor
This series of compressor units are mainly used in the pressurized transmission of pipeline natural gas, oil and gas processing plants and other occasions.
Features 1. Reliable operation and easy maintenance.
2. Flexible load adjustment, wide range of air intake, and a wide range of adaptations.
3, the overall skid-mounted structure, low noise, easy to install in urban areas, saving investment.
4. CHINAMFG PLC control system with high degree of automation and convenient remote control.
Specification
| Model | Captical (Nm3/h) | | Pressure MPa | | Outlet pressure MPa | Power (kW) | Dimension |
| ZW-5.5/2-6 | 900 | 0.2 | 0.6 | 45 | 2000x1600x1250 |
| ZW-2/20 | 110 | Normal pressure | 2.0 | 22 | 2600x1800x1550 |
| VW-3/20 | 165 | Normal pressure | 2.0 | 37 | 2800x1800x1750 |
| VW-4/20 | 220 | Normal pressure | 2.0 | 45 | 2800x1800x1750 |
| VW-5/20 | 285 | Normal pressure | 2.0 | 55 | 2800x1800x1750 |
| VW-6/20 | 330 | Normal pressure | 2.0 | 75 | 2800x1800x1750 |
| VW-6.8/30 | 370 | Normal pressure | 3.0 | 75 | 2800x1800x1750 |
| VW-8/20 | 570 | Normal pressure | 2.0 | 90 | 2800x1800x1750 |
| VW-12.5/25 | 750 | Normal pressure | 2.5 | 132 | 3200x1800x1750 |
| VW-22.5/8 | 1200 | Normal pressure | 0.8 | 160 | 4800x2200x1550 |
| VW-45/8 | 2400 | Normal pressure | 0.8 | 280 | 4800x2200x1600 |
| VW-22.5/22 | 1200 | Normal pressure | 2.2 | 200 | 4800x2200x1750 |
| VW-28/22 | 1550 | Normal pressure | 2.2 | 250 | 4800x2200x1750 |
| VW-36/22 | 2000 | Normal pressure | 2.2 | 315 | 4800x2200x1750 |
| VW-45/22 | 2500 | Normal pressure | 2.2 | 400 | 4800x2200x1750 |
| DW-32/0.05-3 | 1800 | 0.05 | 03 | 132 | 4200x2200x1500 |
| DW-30/2-8 | 4900 | 0.2 | 0.8 | 280 | 4800x2500x1300 |
| DW-16.5/0.5-45 | 1350 | 0.5 | 4.5 | 250 | 4800x2200x1800 |
| DW-3.2/17-48 | 3150 | 1.7 | 4.8 | 160 | 4800x2200x1800 |
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Water Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Compress Level: | Double-Stage |
| Customization: |
Available
|
|
|---|
.webp)
Can Water-Lubricated Compressors Be Used in High-Pressure Applications?
Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:
Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.
The ability of a water-lubricated compressor to operate at high pressures depends on several factors:
- Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
- Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
- Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
- Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.
It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.
When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.
.webp)
How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?
Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:
Positive Effects:
- Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
- Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
- Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.
Negative Effects:
- Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
- Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
- System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.
Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.
.webp)
How does a water lubrication system work in air compressors?
A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:
1. Water Injection:
In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.
2. Lubrication:
As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.
3. Cooling:
The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.
4. Separation and Filtration:
After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.
5. Water Treatment:
In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.
6. Recirculation or Discharge:
Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.
By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.


editor by CX 2023-11-03